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A property of the observations fit 
by the extreme regression quantiles 

Gilbert W. BASSETT, Jr. 
Department of Economics, University of Illinois, Box 4348, Chicago, IL 60680, USA 

Abstract: The extreme regression quantile estimates have recently been proposed as a computa- 
tionally fast method for detecting discrepant points and constructing high breakdown estimates for 
the linear model. Further support for this proposal comes from the following property. The convex 
hull of the observations which exactly fit an extreme regression quantile estimate must contain the 
mean values of the design variables. Hence, the observations identified by an extreme regression 
quantile cannot all be clustered on one side of the overall mean values of the design variables. 
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1. Introduction 

The extreme regression quantile statistics were proposed as a tool for detecting 
outliers and for constructing high breakdown estimates in a recent paper by Steve 
Portnoy [4]. The observations fit exactly by the extreme regression quantiles, 0 
near zero and one, correspond to linear model versions of the smallest and largest 
order statistics and, hence, might be expected to identify outlying values of the 
dependent variable; see Koenker and Bassett [2]. The regression quantiles, as 
M-estimates, may be also expected to be influenced by and tend to go through 
extreme design points. Portnoy proposes an iterative procedure for peeling such 
observations away from the data set. He shows that an estimate based on this 
method achieves high breakdown without being as computationally difficult as 
other high breakdown procedures; see Rousseeuw [5] and Siegel [6]. 

This note establishes another property for the extreme regression quantiles. 
The mean values of the explanatory variables must fall inside the convex hull of 
the observations which exactly fit the extreme regression quantiles. For example, 
in Figure 1 there are two lines which fit two of the observations and which have 
all residuals nonnegative. One of these lines corresponds to the smallest extreme 
regression quantile estimate. The property established below says that line I must 
be the extreme regression quantile because it is the one which fits observations on 
opposite sides of the design mean Z. Conversely, the observations at the design 
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Fig. 1. Extreme regression quantile estimates. 
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points labeled (1) and (2) can never (for any values taken by the dependent 
variable) correspond to an extreme regression quantile estimate because they fall 
on the same side of 5. The general property offers some support to Portnoy’s idea 
by showing that the design points fit by the extreme regression quantiles cannot 
all cluster to one “side” of the overall mean values of the design variables. 

The properties of the extreme regression quantiles are presented and explained 
further in the next section. The proofs are in Section 3. The Appendix discusses 
some situations which for simplicity not covered by the theorem in Section 2. 

2. The results 

Let y denote a vector in R”. The design for the linear model is an ( IZ xp) 
matrix X where rank X=p, and the first column is a vector of ones; the model 
has an intercept. The ith observation on the (p - 1) nonconstant explanatory 
variables is z, = (zi,, . . . , z~(~_~)) so that xi = (1, zi). The mean vector of the 
design variables is X = (1, 5) = n-lC:= t xi. 

The 0 th regression quantile is denoted by B * (13) and is the solution set to 

min p(b: 0) 
btRP 

(1) 

where 8 is a parameter in (0, 1) and 

p(b: B) = k c(j$-x,b: 0) 
i=l 

andc(e:8)=81el or(1-8)1eI ase>Oore<O. 
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The smallest regression quantile is denoted by B * and is defined by 

B* = {p* I/3* E B*(O) some (small 8), 

andsgn(yj-xx,p*)>O,i=l ,..., n}, 

We will say B * is unique if it contains a single element. When p = 1, & * is equal 
to the smallest order statistic (andjs always unique). 

The largest regression quantile B * is defined in a similar fashion; that is, 

B* = { /?* 1 ,O* E B*(8), some 8 (close to one), 

andsgn(y,-x;P*)<O, i=l,..., n}. 

All the results below hold for both B* and B* and will be stated solely for the 
smallest regression quantile. 

Two simplifying restrictions will be used in stating results. The first takes B* 
to be unique. As explained in the appendix, there are only very special situations 
under which B* is not unique and, in case this does occur, it can always be 
eliminated by a slight perturbation of the data. When B* is unique it will 
correspond to an estimate which fits p of the observations exactly and the 
remaining observations will have nonnegative residuals. The second simplifying 
restriction is a restriction on y E R” which insures that the residuals from the B * 
fit are not only nonnegative but positive. We will then be able to unambiguously 
identify B* with the p observations which it fits exactly. The events not covered 
by this restriction are best treated separately and they can be in practice ignored 
if y is the value of a continuous random vector because they then have 
probability zero. (The first restriction corresponds to there being no multiple 
optimal solutions to the linear programming regression quantile problem (see 
Koenker and d’Orey [3]) and the latter corresponds to the absence of degeneracy.) 

Let h denote p distinct indices from (1,. . . , n) and let h denote the comple- 
mentary n -p indices. X(h), X(h), y(h) and y(h) will denote submatrices or 
subvectors with rows or components in the indicated h or h index set. 

Let H denote all the h’s such that rank X(h) =p. Corresponding to each h 
there is a b(h) = X( h)-‘y(h) where b(h) is an estimate which exactly fits the 
observations i E h. Let S denote the set of all b(h), h E H. 

If the solution set B * (19) is a single point, p * (13), then sgn( yj - xjp * (0)) = 0 
for at least p of the observations; that is, ,8 * (0) E S. If the solution set is not a 
single point it will be the convex hull of at most p + 1 points each of which is in 
S. (But this fails to hold at 6’ = 0 where the solution set is unbounded and 
contains any b which makes all the residuals non-negative. This is the reason for 
taking 0 < 8 < 1.) The uniqueness assumption for B * means that B*( 0) is 
unique when 8 increases slightly away from zero. 

The simplifying restriction on y which insures a one-to-one mapping between 
an observation subset h and an estimate b(h) is to take y E R” where 

En= {yER”ly,-x,b(h)#O, all iEh, all hEH} 
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(the dependence of R” on X will be hopefully clear from the context). When y is 
in R” there will be no more than p points, (y,, z;) E RP which fall on any 
nonvertical hyperplane in R p. The assumption y E ?’ is sometimes referred to as 
y being in general position. 

Finally, given vectors ui E R”, i = 1,. . . , T let the convex hull be denoted by 

T 

i I 
T 

conv(ujli=l,..., 7’)~ xA,ui ~xi=l,O<&<l . 

i=l i=l i 

For example, if ui E R then conv( ul, u2) would be the interval with endpoints u1 
and u2. If ui E R2 then conv( ui, u2, u3) would be a triangle with corners at ul, u2, 
and u3 (or a line segment if the ui are not linearly independent). 

Theorem. Suppose y E Rn and g * is unique. Let h * denote the p indices such that 
B* = b(h*). Then 

Z E conv(z,l i E h *) 

Conversely, let h be any set of indices such that Z @ conv( zi 1 i E h). Then b(h) will 
not be in g * for any y E R”. 

To see what the theorem says for p = 3 consider Figure 2. Each point 
represents a design point ( zil, zi2) E R2, i = 1,. . . , n, and the mean of the design 
variables is (0, 0). Consider the design points labeled 1, 2, 3. Visualize the data 
(y,, zi) in R3 and suppose the plane which contains these three observations lies 

. 

Fig. 2. Extreme regression quantile estimates with p = 3; Z = 0. 
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below all the remaining (y,, zj) points. The theorem says that this must be the 
extreme regression quantile hyperplane because the mean (0, 0) is in the convex 
hull of observations 1, 2, and 3. 

Conversely, consider the observations labeled 4, 5, 6. According to the theorem 
there is no configuration of y E R” which will ever make the (4, 5, 6) hyperplane 
in R3 equal to the extreme regression quantile estimate. The problem with 
(4, 5, 6) is that it does not contain the mean vector (0, 0) and hence can never 
yield the extreme regression quantile estimate. ’ 

3. Proofs 

Let p’( b : w : 0) be the directional derivative of p( b : 0) at b in the direction w, 
forO<B<l. Wehave 

p’(b: w:8)= i [-8+0.5-0.5sgn*(yi-x,b: -xiw)]xjw 
i=l 

where sgn*( e : u) = sgn( e) if e f 0 and sgn( u) otherwise. Write w = X( h)-‘u, 
u E RF, b = b(h) = X( h)-‘y( h) so that 

p’( b(h) : X(h) %B)= -Bn-&)u,+ 5 [o.5u,+o.5)vi~] +s(u) 
i=l i=l 

where 

s(u) = c [0.5 - 0.5sgn*(y,- xib(h): --xix(h)-‘u)]xiX(h)-‘u 
iEh 

(3 .I> 

and 

A(h) = (X,(h),..., h,(h)) =xX(h)-‘. (3.2) 

Now suppose b(h) E B * and y is in R”. We then have S(U) = 0. Further, since 
p is convex it must be the case that p’( b(h) : X(h)-% : 19) 2 0 for all ( u ( = 1 
and, as can be verified, this holds if and only if Xi(h) 2 0 for all i E h. That is, 

ifyER”andb(h)EB* thenX,(h)>O,alliEh. (3.3) 

’ The case of a nonunique extreme regression quantile estimate corresponds to Z being on the 
boundary of the convex hull. Also, a general geometric property which is not instantly obvious 
follows from the fact that there is always some smallest regression quantile estimate. Namely, for 
any y E R” there will always exist a hyperplane which goes through p observations, where all 
remaining observations are above the hyperplane and where the mean vector Z is in the convex hull 
of the p observations (one might have thought (incorrectly) that some configuration of data could 
leave Z outside the convex hull of all the “lower” observations). 
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Also, it can be verified that Aj( h) > 0 for all i E h if and only if the directional 
derivative is positive at all 1 u 1 = 1 which by convexity means B* is unique, so 

if y E R” and b(h) is unique then Xi(h) > 0, all i E h. (3.4) 

Now look at X(h): 

TX(h)-‘=h(h) or Z=A(h)X(h), 

which in detail says 

1 = i Xi(h) (3.5) 
i=l 

because the model has an intercept and 

Z= c h,(h)z; 
iEn 

(3.6) 

Now (3.3) says that when y E R” and b(h) EB* there will exist X,(h) 2 0 
satisfying (3.5) and (3.6); that is, Z is a convex combination of the zi, i E h; this 
is the first part of the theorem. (Actually, if B* is unique then Z must be in the 
interior of the convex hull of the zi, i E h because uniqueness implies hi(h) > 0; 
see Appendix.) 

To establish the converse suppose y R” and b(h) E B * for some h such that 

Z E c X;( h)zi. 
i=h 

The latter means that (3.6) and (3.5) will hold only if for at least one i we have 
Xi(h) -c 0; suppose this holds at i = 1. Then from (3.1) the directional derivative 
at ui = e, = ( - 1, 0,. . . , 0) is 8nX,( h) c 0, so that p is decreasing at b(h) and this 
contradicts b( h) E & *. 

Appendix 

Consider the set of 8 where B *(fl) is not unique. (When p = 1 and y E ?’ 
this set consists of the points( i/n), i = 1,. . . , n.) Suppose it were true that this set 
was finite for any y E &’ and any design X. There would then exist an open 
interval (0, 0’) where B*( 0) was constant and unique and hence the smallest 
regression quantile would always be unique. 

The conjecture about the finite number of 6’ values where B* is not unique is, 
however, false; see the example in Bassett and Koenker [l, p. 4101. For another 
example, consider the data in Figure Al. In this case there is an interval (0, 0’) 
where B*( 8) is a nonsingleton set for each 8 E (0, 8’). (The lines I and II and all 
convex combinations of these lines are in B *( 0) for small 6’ values.) The next 
theorem shows that this occurs only when the design points take special values 
and hence can be eliminated by a slight perturbation of design points; Portnoy [4] 
refers to this as dithering with the data. 
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Fig. Al. Nonunique extreme regression quantiles; Z = 0. 

Theorem Al. Suppose Z is not on the boundary of conv( zi ) i E h) for any h E Il. 

Then g * is unique for all y E R”. 

Proof: Under the stated conditions we have, on using results from the proof in 
Section 3, that p’( /I* : W) > 0, all W, actually implies p’( j3 * : w) > 0, all W, so 
that, by convexity of p, if /3 * solves the regression quantile problem then it is the 
unique solution. This completes the proof. 

Since nonuniqueness requires Z to be on the boundary of a convex hull of 
observations, a dithering of the design values will move Z away from the 
boundary and will insure a unique extreme regression quantile. 
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