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 March Madness, Quantile Regression
 Bracketology, and the Hayek Hypothesis
 Roger Koenker

 Department of Economics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (rkoenker@uiuc.

 Gilbert W. Bassett Jr.
 Department of Finance, University of Illinois at Chicago, Chicago, IL 60607

 A quantile regression variant of the classical paired comparison model of mean ratings is proposed. The
 model is estimated using data for the regular 2004-2005 U.S. college basketball season, and evaluated
 based on predictive performance for the 2005 National Collegiate Athletic Association (NCAA) bas
 ketball tournament. Rather than basing predictions entirely on conditional mean estimates produced by
 classical least-squares paired comparison methods, the proposed methods produce predictive densities
 that can be used to evaluate point spread and over/under gambling opportunities. Mildly favorable betting
 opportunities are revealed. More generally, the proposed methods offer a flexible approach to conditional
 density forecasting for a broad class of applications. An electronic supplement containing predictive den
 sities for point totals and team offensive and defensive ratings is available from the JBES website.

 KEY WORDS: Paired comparison; Quantile regression.

 "Though this be madness, yet there is method in't." (Hamlet [II, ii])

 1. INTRODUCTION

 To concentrate the mind, imagine yourself on the evening
 of Selection Sunday with a decent laptop and a good internet
 connection struggling with the task of "filling out the NCAA
 tournament bracket," that is, picking the winners of the games
 of the impending single elimination tournament. Although prior
 season performance of the teams is readily available from inter
 net sources, a more challenging task is to find a plausible model
 capable of making credible predictions. Ideally, we would like
 a model that will predict for any particular pairing of teams
 the joint density of their final scores. From such a predictive
 density one can then design betting strategies based on point
 spreads, odds, the over/under, or other gambling opportuni
 ties. Conventional paired comparison models deliver, at best,
 an estimate of a pair of mean scores, under the maintained
 hypothesis that there is a homogeneous bivariate normal den
 sity centered at this estimate. Often, however, only the mean
 of the score difference is estimated, or even more simply, a pre
 dicted probability of a victory based on binary data on won-lost
 records.

 Adapting quantile regression methods to the paired compar
 ison framework, we describe a model that is capable of deliv
 ering estimates of this conditional joint density. The approach
 is illustrated by estimating the model for the 2004-2005 Na
 tional Collegiate Athletic Association (NCAA) college basket
 ball season. Evaluation of the performance of the methods is
 based on out-of-sample predictive performance for the 2005
 NCAA Division I tournament.

 There is an extensive literature on sports betting, or what is
 known more euphemistically in economics as wagering mar
 kets. For a valuable survey see Sauer (1998). It is often claimed
 that such markets reveal something important about how het

 erogeneous probabilistic information about athletic contests
 gets baked into the Hayek (1945) cakes of efficient odds, point
 spreads, and yet more esoteric gambles. A multitude of pub
 lished studies documented small discrepancies that seem to un
 dercut the "market efficiency of sports betting." But the econo
 mist's normal skepticism entitles us to ask: Can this just be the
 flip side of the familiar publication bias worry? Betting strate
 gies that win, but fail to overcome the vigorish, get published;
 strategies that succeed go directly to Vegas.

 Our predictions clearly reveal favorable betting opportunities
 well in excess of the prevailing vigorish. Instead of rushing off
 to Las Vegas, we prefer to disseminate the methods, which have
 a broad range of potential applications in other statistical do
 mains where paired comparison data arise. Rarely are the con
 venient simplifying assumptions of the classical paired compar
 ison methods easily justified. When they are violated, there are
 potential gains from estimating more flexible models like those
 proposed in the following.

 Paired comparison data arise not only in sports, but in many
 other settings. Multiple treatments are evaluated with paired
 comparisons in clinical trials, consumer product testing, evalua
 tion of expert testimony, page ranks for web pages, educational
 testing, and a variety of other contexts. More generally, the

 methods suggested here illustrate a flexible approach to the es
 timation of conditional densities that have applications in many
 other settings beyond the paired comparison model where ef
 fective forecasting requires more than a conditional mean pre
 diction

 After a brief critique of classical paired comparison methods
 in Section 2, we introduce our model in Section 3, describe es
 timation methods in Section 4, and evaluate the performance of
 the methods in Sections 5 and 6.

 ? 2010 American Statistical Association
 Journal of Business & Economic Statistics

 January 2010, Vol. 28, No. 1
 DOI: 10.1198/jbes.2009.07093

 26

This content downloaded from 131.193.211.30 on Thu, 24 Mar 2016 01:50:16 UTC
All use subject to http://about.jstor.org/terms



 Koenker and Bassett Jr.: March Madness 27

 2. WHAT WE ARE NOT PROPOSING TO DO

 Two hundred years of statistical inertia might suggest that we
 begin by considering a paired comparison model for expected
 scores that looks like this:

 EYig=ai-8j + YDig9 (2.1)
 where Y?g denotes the score of team / in game g against op
 ponent j. The parameter a? may be interpreted as an offensive

 rating of team /, 8j is a defensive rating of team j, and y de
 notes a generic home court advantage, if any, so Dig takes the
 value 1 if game g is played on team s home court, and takes
 the value 0 otherwise. Least-squares estimation of this condi
 tional mean model will presumably use all of the results prior
 to the tournament. Each game will contribute two observations
 and we estimate a vector of offensive and defensive ratings for
 each of the m teams that were potential candidates for the tour
 nament. We employ a version of this model as a point of com
 parison for our forecasting evaluation. See David (1988) for a
 definitive treatment of the classical theory of paired compar
 isons.

 Estimation of this model by conventional least-squares meth
 ods raises several immediate concerns:

 (i) The model assumes that offensive and defensive per
 formances of teams differ only in location while vari
 ation around these mean values is symmetric, constant
 across teams, and approximately Gaussian in shape.
 Thus, team effects are confined to the shifting location
 of the score densities, but since they have no effect on
 the scale or shape of these densities the model cannot
 capture the possibilities that some teams are more con
 sistent than others or exhibit some form of asymmetry
 in their performance.

 (ii) Violations of Gaussian assumptions can introduce seri
 ous ratings anomalies, see, e.g., Bassett (1997), since a
 few games with extreme scoring can have undue influ
 ence on estimated parameters.

 (iii) The estimation of such a large number of parameters
 with relatively few observations is questionable; typi
 cally we might expect to have about 200 teams, thus 400
 parameters, and about 3000 observations. Identification
 requires that there are not isolated groups of teams that
 never play common opponents, but even when this mini
 mal condition is satisfied it may be advantageous to con
 sider regularization schemes that introduce some form
 of "prior information."

 (iv) One may wish to question the independence assump
 tion underlying an ordinary least-squares estimation of
 Equation (2.1). Teams may be thought to have "momen
 tum" over the course of the season, introducing positive
 dependence in their performance. Perhaps even more
 plausibly, there may be dependence between the pair of
 scores for each game.

 (v) Finally, we may wish to predict the outcomes of games
 to evaluate performance of the model, with respect to
 potential gambling opportunities, purely as a matter of
 academic curiosity, of course, but these opportunities
 may require more than mean forecasts.

 It may seem to be expecting a lot to resolve all of these issues
 in one brief article, but then expecting isn't our game.

 3. A QUANTILE REGRESSION PAIRED
 COMPARISON MODEL

 Rather than modeling expected scores according to Equa
 tion (2.1), suppose instead that we model conditional quantiles
 in an analogous fashion,

 QYig(r) = a/( ) - 8j(T) + y(T)Dig. (3.1)
 We maintain the assumption that there is a simple additive effect
 model in which now quantiles of team f s score against team j
 are determined by the difference in their offensive and defen
 sive ratings shifted by a home court advantage, ( ). However,

 these ratings may now be -dependent. If we fix = ^ for a
 moment and compare Equations (2.1) and (3.1) we are simply
 replacing a model for the conditional mean with one for the con
 ditional median. The latter has a significant advantage, however,
 since it will be less sensitive to the tail behavior of the under

 lying random variables representing scores, and consequently,
 will be less sensitive to observed outliers in scores when it

 comes time to estimate the model. We maintain throughout the
 assumption that games are independent realizations, but will ex
 plore the within-game dependence of scores using copula meth
 ods.

 Like the mean model, the median model is a pure location
 shift model; no provision is yet made for differences in the
 variability of a team's performance, their consistency, if you
 will. One might also imagine other more subtle differences
 in the shape of teams' scoring distributions. The specification
 of Equation (3.1) allows both offensive and defensive perfor
 mances of teams to vary in dispersion, symmetry, or more ex
 otic shape characteristics. Of course, this increased flexibility
 comes at a price. We replace an already rather profligate model
 with several hundred parameters with an even more profligate
 one in which each former parameter is now a function mapping
 the unit interval into the real line. Before turning to our dis
 cussion of estimation of this model, we briefly describe how it
 might be used for prediction.

 4. QUANTILE REGRESSION BRACKETOLOGY

 One may well ask: Given such a complicated model how are
 we to make predictions from it? This question has a surpris
 ingly simple answer, if we accept, for the moment, the working
 premise that given the ratings, scores are independent. Consider
 the problem of predicting the winner of a game between teams /
 and j at a neutral site. The model provides quantile functions for
 the two scores:

 ?^( )=a/( )-0/( )
 and

 ?^( )=a;?( )-5/( ).
 The score of such a game can thus be represented, under our
 independence assumption, by the pair of random variables,
 (QYig(U), Qyj8(V)) where U and V are independent standard
 uniform random variables. The probability of team i winning
 by some fixed margin at a neutral site is thus,

 nij = P{QYig(U)>QYjg(V) + A).  (4.1)
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 Given explicit forms for the a's and <Ts, this probability is easily
 approximated by simulation methods. We defer the question of
 possible dependence of U and V until Section 6, where we will
 be able to bring some empirical evidence to bear upon it.

 To predict winners we simply set = 0 as above, and choose

 team / if y > \ and choose team j otherwise. Predicting ex
 act scores is an obviously much more challenging task. But, in
 principle, the model, by specifying the joint distribution of the
 game's final scores, provides everything that is necessary.

 5. ESTIMATION

 Estimation of Equation (3.1) is most straightforward if we
 begin by considering unconstrained estimation of the model for
 a single quantile. For each game g we have a pair of scores
 (yig,yjg)- Maintaining our working independence assumption

 we wish to solve,

 , m}n, * - i+sj ~ yDis)+ (yjs ~ aJ+s? ~ ytyg) > {a, , )

 where ( ) = u - ( ? I(u < 0)). The resulting estimator
 ? ( ) = (a ( ), ( ), ( )) consistently estimates the parame
 ters of the conditional quantile in Equation (3.1) under the
 conditions discussed in Koenker (2005). In the present con
 text, these conditions posit a sequence of estimation problems
 with a fixed configuration of teams and the number of games
 tending to infinity in such a way that the schedule maintains
 the full rank condition specified in A2(i) of theorem 4.1 of
 Koenker (2005), a requirement that necessitates some regular
 interleague play between the teams. Balancing the plausibility
 of such assumptions over longer time horizons with stationar
 ity assumptions on model parameters requires careful consid
 eration. Consistency does not require independence of the re
 sponses (yig,yjg), indeed, there is a large amount of literature
 on estimation of quantile regression models under dependent
 conditions, see, e.g., Koenker (2005, section 4.6), and the refer
 ences cited therein. What is crucial is the validity of the hypoth
 esized Equation (3.1), which ensures that the expected value of
 the objective function is minimized at = (a, , y) and that we
 have some control over the severity of the dependence. The lat
 ter consideration is trivially assured by the m-decomposability
 condition of Portnoy (1991) since the observations are one
 dependent under our assumption that observations are indepen
 dent across games.

 Suppose we have games among m teams in the pretourna
 ment sample. Defining by m matrix H with gth row having fth
 element one, and remaining elements zero, and by m matrix A
 with gth row having the jth element equal to one, we can rewrite
 the problem in matrix notation as

 min||y-^||r,

 where ||w||T = ^ pr (w/), y = (yi, yj) denotes a stacked vector of
 scores, = (a, , y), and

 \ -A Di
 A - DJ/

 Here the vectors D? and Dj are indicators for whether the gth
 game is a home game for teams / or j, respectively. Of course,
 some games are played at neutral sites early in the season and
 for these games the entries in both D vectors will be zero.

 The dimensionality of the matrix X is somewhat alarming,
 but modern developments in sparse linear algebra make solving
 problems like the one specified above very easy. The algorithm
 used to compute is the sparse version of the Frisch-Newton
 interior point method described in Portnoy and Koenker (1997)
 and Koenker and Ng (2005). The sparsity of the design ma
 trix X is quite extreme for these paired comparison models:
 there are, at most, three nonzero elements in any row of the

 X matrix. A computer representation of the problem requires
 only the storage of these nonzero elements and their indexes.
 Also, as noted in Koenker and Ng (2005), the computational ef
 fort is roughly proportional to the number of nonzero elements,
 so estimation even over a grid of several hundred 's is quite
 quick, requiring only a few minutes. Estimation of the quantile
 regression model was carried out with the quantreg pack
 age of Koenker (2006) designed for the R environment. Esti
 mation of the corresponding conditional mean model was done
 with the SparseM package of Koenker and Ng (2006) for the
 same environment. It is worth emphasizing that even the least
 squares version of the model will be a very challenging estima
 tion problem in the absence of sparse linear algebra given that
 we are estimating 464 parameters. Further details on the com
 putations, including data and all software used to produce ta
 bles and figures, are available from http://www.econ.uiuc.edu/
 ~ roger/research/bracketology/MM. html.

 6. TASTING THE PUDDING:
 THE 2004-2005 SEASON

 We estimate Equation (3.1) using data on 2940 games involv
 ing 232 Division I NCAA teams from the 2004-2005 basketball
 season. These games all occurred on or before Selection Sun
 day, March 13, 2005. Predictions reported in the following are
 based on estimation of the model using games through the tour
 nament round preceding the prediction. Thus, the final game be
 tween the University of North Carolina (UNC) and the Univer
 sity of Illinois at Urbana-Champaign (UIUC) prediction uses
 all of the tournament game data, except, of course, for the final
 game itself. The model is estimated on an equally spaced grid of
 J = 199 quantiles e (0, 1). Thus, for each of the 232 teams,
 we have an estimated offensive and defensive rating function
 evaluated at J points. The electronic Appendix to the article
 provides a graphical representation of these estimates and some
 associated one-dimensional rankings. In addition, we estimate a
 "home court advantage" that varies from somewhat more than
 three points per game to somewhat less than two points, as
 varies from 0 to 1. This home court effect is set to zero for

 our predictive exercises since tournament games are played on
 neutral courts, just as for the pretournament games on neutral
 courts in the estimation stage.

 Our estimation method treats games as independent realiza
 tions, and assumes moreover, that the two realized scores for
 each game are also independent. The latter assumption seems
 particularly implausible. To explore the possible dependence of
 within-game scores we rely on a quantile regression specific
 notion of "residuals." Given a realized score yig for team / in
 game g we ask: At what estimated quantile does this score fall?
 More explicitly, we compute the pairs,

 Ukg= / Kykg S Qkg(r))dr, k = ij. Jo
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 By construction, these two random variables will each be
 approximately uniformly distributed. We can regard the pair

 (w/g, Ujg) as quantile regression "residuals" for the game g. See
 Koenker (2005, section 3.5.4) for further details and the link
 to the regression rank score statistics of Gutenbrunner and Ju
 reckov? (1992). Equation (3.1) can be interpreted by Koenker
 (2005, section 2.6) as a random coefficient model in which
 scores are generated by

 Yig = ai(U)-&j(U) + y(U)Dig
 and

 yjg="j(V)-8i(y) + Y(V)Djg,
 where U and V are uniform random variables on [0,1]. Under

 this model, the pair (w,g, ujg) are the natural estimates of the
 corresponding pair (?/, V).

 Recall that for any bivariate distribution function Fxj(x,y)
 with marginals Fx(x) and Fy(y), we define the copula function

 C{u,v)=Fx,Y{Fx\u),Fy\v)).
 The copula function may be interpreted as the joint distribution
 function of the random variables U = Fx(X) and V ? Fy{Y)
 with uniform marginals, and concisely represents the depen
 dence between the original variables X and Y. Thus, potential
 dependence between scores within games can be explored by
 fitting copula models to the pairs (uig, ujg). Their scatterplot,
 appearing in Figure 1 for our sample of 2940 games, exhibits
 some clustering along the diagonal, indicating a weak positive
 dependence in the two scores; a slowdown of the pace of the
 game by one team lowers scores for both teams. Figure 1 su
 perimposes contours of the one-parameter Frank copula esti
 mated by maximum likelihood. The estimated copula parame
 ter of 2.52 with a standard error of 0.12 is highly significant,
 reinforcing the implausibility of the independence assumption.
 The (Kendall) correlation of the pair of scores is 0.27, which is
 also highly significant and closely matches the value obtained
 by simulation from the estimated copula. It may be eventually
 possible to improve the efficiency of the estimation of the model
 by exploiting knowledge of this dependence?in the spirit of
 Zellner's seemingly unrelated regression (SUR) model?but we

 Figure 1. Estimated Frank copula density contours for final scores.

 will not pursue this here. Consistency of the estimated ranking
 functions follows, as we note previously, from existing results,
 and this justifies the two-stage approach that we adopt. This de
 pendence will be accounted for in our predictions where it plays
 an important role.

 An extreme way to account for dependence in the within
 game scores is to assume that both scores are generated by the
 same quantile "draw." Recall that if a random variable X has
 distribution function F and associated quantile function Q(u) =
 F_1 (w), then we can simulate realizations from X by generating
 uniform random variables, U, and computing X = Q(U). This
 follows immediately from the fact that,

 P(X <x) = P(Q(U) <x) = P(U < F(x)) = F(x).

 Thus, for example, if we consider the final game of the 2005
 NCAA tournament between UNC and UIUC, we can make pre
 dictions based on scoring outcomes of the form

 (??,S/) = (?(g(r),?^(T)),

 by simply replacing in the above expression by a draw from
 U ~ U[0,1]. In the copula model this corresponds to all the
 mass of the copula concentrated on the 45% line of the unit
 square. In this case, we also have a linear conditional quantile
 model for score differences. For the classical paired compari
 son model the linearity of the conditional mean specification
 implies a corresponding model for score differences, but this is
 generally not the case for the quantile regression specification in
 Equation (3.1) unless we impose the condition of comonotonic
 ity of the score pairs. We briefly consider this special case be
 fore turning to a more general analysis of weaker forms of score
 dependence based on copula models.

 For the UNC-UIUC game, this approach yields the predic
 tions illustrated in Figure 2. For each possible U on the hori
 zontal axis we obtain a pair of scores whose vertical difference
 represents the margin of victory. For < 0.60, UNC looks like
 it should be the clear winner, however, in the upper tail, that is

 in high scoring games, UIUC has a slight advantage. At the me
 dian, UNC has about a three point advantage, while at the first

 0.0 0.2 0.4 0.6 0.8 1.0

 Figure 2. Estimated marginal quantile functions for the scores of
 the 2004-2005 NCAA final game between UNC and UIUC.
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 quartile their advantage is four, and at the third quartile UIUC
 has a slight edge.

 It is tempting to attach some psychological or physiological
 interpretation to the values and U, but remembering that each
 score is the consequence of both an offensive rating and a defen
 sive rating the model makes no such judgments. In the conven
 tional paired comparison models based on mean performance
 there is a built-in assumption that the ability of teams differs
 by a constant factor and this difference applies over the whole
 range of the distribution. However, in the quantile regression
 version of the model, it is quite possible that one team can be
 more variable in their performance on offense, or on defense,
 or both, while another, more consistent team can be superior
 with high probability. This flexibility of the model raises some
 new questions for prediction. We do not want to make a predic
 tion of the winner of the game based on only what is predicted
 to happen "at the median." Nor do we want to make a predic
 tion about the point spread based on estimates of mean scores.
 For the UNC-UIUC game, there seems to be a clear signal to
 choose UNC if one is asked to pick a winner, but this may be
 too easy. What if we are asked to predict whether UNC will beat
 the posted Las Vegas point spread of two points? This question
 leads us toward a more realistic prediction that incorporates the
 dependence between scores.

 We have considered, so far, two extreme models of scoring:
 one in which the scores are independent realizations from our
 marginal quantile functions, the other in which the two scores
 are deterministically linked. A more sensible view is the one
 provided by the copula model mentioned earlier. Given our es
 timated copula model, we can draw a pair of independent stan

 dard uniform random variables, ?//, Uj and evaluate,

 (hJj) = (Qigm,Qj8(Uj)).
 These uniforms, since they are generated from the estimated
 copula model, are dependent, and consequently, the generated
 scores are also dependent, but not comonotonic as in the situa
 tion illustrated in Figure 2. Repeated evaluations like this yield
 a predictive distribution for the scores of the game, from which
 we can make various predictions. For example, the estimated
 probability of team / beating team j by more than a specified
 point spread is simply the proportion of generated points on
 the right side of the line s i ? sj = A.

 In Figures 3 to 5 we illustrate the predictions of the model
 for 48 of the 64 games of the 2005 NCAA tournament based
 on estimation of the model using games up to and including the
 tournament round prior to the game. Eleven of the tournament
 games involved teams for which our season information is in
 sufficient to estimate ratings; five additional first round games
 are dropped to reduce the plotting region. We follow the pro
 cedure described previously to simulate G ? 10,000 realiza
 tions of the scores for each game from the estimated model.
 These scores are then projected on the (?1, 1) axis to produce
 winning point margins for the G games and densities are es
 timated for each game using the default kernel method of R.
 This simulation method of producing predictive densities is
 closely related to the "rearrangement" methods for monotoniza
 tion of conditional quantile estimates introduced recently by
 Chernozhukov, Fern?ndez-Val, and Galichon (2006). Vertical
 grey lines in these figures depict the zero reference value, black

 lines in< licate the actual score of the game, and the edge of the
 shaded 'egion indicates the Las Vegas closing point spread an
 nounce I for the game.

 The t rst thing to say about these figures is that there are sub
 stantial differences in the dispersion and shape of the estimated
 densities as well as their location. Thus, the usual location shift

 hypothesis that underlies the conventional paired comparison
 models seems to require some reassessment. An examination
 of the position of the announced point spreads shows that they
 are usually "toward the mode" of the estimated densities and
 away from the grey "toss-up" line. Whether this should be in
 terpreted as a vindication of our model and estimation method,
 or as the cleverness of the Las Vegas gambling establishment,
 we leave to the learned reader. The black lines designating the
 actual outcome of the games are considerably more dispersed,
 as they should be.

 6.1 Bracketology and Tournament Survival

 Of course predicting outcomes of the games played in the
 actual 2005 tournament as it evolved does not provide adequate
 guidance for filling in the tournament bracket ex ante. For this
 we will need predictions for pairings that might have occurred,
 but did not happen to occur in the 2005 tournament. No prob
 lem. Any pair of teams for which we have data can be pit
 ted against one another with the scores generated according to
 the model and probabilities estimated. To this end, we simulate
 1000 realizations of the 2005 tournament starting in every case
 from the actual seedings as announced on Selection Sunday.
 This exercise is slightly complicated by the fact that for some
 teams we do not have adequate season data to estimate ratings.
 However, since these teams were generally obscure and did not
 fare well in the first round, we assume that they will lose and
 their opponent was given a bye.

 Simulating 1000 instances of March Madness 2005 takes
 about as long as a commercial time-out using a somewhat anti
 quated Mac G5. Given the outcomes of these simulated tourna
 ments w e can easily compute the number of successful rounds
 for each team in each replication; from this, survival curves can
 be estimated for each team. These survival curves are shown

 in Figure 6 where they are ordered by mean survival time. Re
 call that mean survival time can be expressed as the sum of the
 survival probabilities for the six rounds, and therefore, the area
 under the curves in the figure give a visual indication of the ex
 pected round that each team exits from the tournament. On this
 criterion UNC again comes first with mean 4.025, while UIUC
 is second with mean 3.905, Duke University is next with 2.953.
 These values provide only one of many possible ways to assess
 performance in the tournament. Another is to simply look at the
 probability that each team has of winning the tournament. On
 this criterion we have UNC with probability 0.318 and UIUC
 with 0.233; the next most likely winner is Duke at 0.083, and
 then we have the University of Louisville and Michigan State
 University (MSU) both with probabilities of 0.057.

 7. IF YOU'RE SO SMART, WHY AREN'T YOU RICH?

 We wdl be remiss if we fail to address one last question that
 looms large over any enterprise such as ours. In this conclud
 ing section, we explore several betting strategies based on the
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 Figure 3. Predictive densities for the point spread of 2005 NCAA tournament games.

 foregoing results and evaluate how they would have done based
 on the 2005 tournament. Predictions are based on updated es
 timates of the model including games of the previous round.
 Thus, first round game predictions use only the regular season
 data, second round games use this data plus the results of the
 first round games, and so forth.

 7.1 Betting on the Point Spread

 We begin by considering betting on point spreads. We can?
 as we already note following Equation (4.1)?estimate the
 probability of beating the announced point spread in any par
 ticular game. As long as this - is different from 1 /2 there is
 a temptation to put money on the table. Of course we do not
 "know" the relevant p's for the NCAA games, but we have
 our estimates and may hope that strategies based on known
 p's might perform decently for estimated ones. In unfavorable
 games bold play is optimal, as we know from Dubins and Sav
 age (1965), and this dictates placing one very large bet on the

 game with the largest divergence between and 1/2, but strate
 gies for favorable games with uncertain probabilities are more
 complex. Breiman (1961) provided an elegant introduction to
 this subject.

 Before going any further, we may want to check whether
 there is any merit in the conjecture that betting according to
 the model on the games of the 2005 NCAA tournament yields a
 profit. Returning to Figures 3 through 5, we explore this conjec
 ture game by game: for each game we indicate the estimated y
 for the closing point spread. This value corresponds to the area
 shaded in the figure. For y < 0.5, we bet on the team after the
 "versus" in the panel title, since it indicates that there is a bet
 ter than 50-50 chance that this team will beat the point spread.
 Thus, if the black vertical line denoting the winning margin of
 the actual game falls in the shaded region our bet will be suc
 cessful, otherwise it will not be successful.

 For example, for the game between the University of Wis
 consin and UNC in the upper left corner of Figure 6, the point
 spread was 11, the model predicts that the probability of UNC
 winning by 11 or more is only 0.490 so we bet on Wisconsin,
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 Figure 4. Predictive densities for the point spread of 2005 NCAA tournament games.

 and since UNC only won by six points, we collect. With this
 visual heuristic in place, we can scan through the panels of Fig
 ures 3 to 5. As an aid to this scanning we indicate the probabil
 ities appearing in each panel with the successful predictions in
 bold black and the unsuccessful in grey. What we find is mildly
 encouraging: in 28 out of 48 games we select the winning side
 of the point spread. Early games have a less impressive perfor
 mance with only 8 of the first 16 games in Figure 3. But, of
 the final 32 games, we have 20 successful predictions, a finding
 that may simply reflect the ancient and canonical answer to our
 canonical question: "It is better to be lucky, than smart."

 In fact, closer examination reveals that there is one game,
 West Virginia versus Louisville, that the posted point spread
 was predicted precisely. Such "push" games are treated, by con
 vention, as if there was no bet, so money is refunded. Thus, we

 should properly consider the model to predict 27 out of 47, giv
 ing a frequency of success of 0.574. This is certainly not signif
 icantly different from 0.5 at conventional levels of significance.
 The /7-value of an exact test is only 0.38, but given that it costs

 $110 to place a $100 bet, our 0.574 frequency implies that we
 will have an expected gain of about $10.50 on each $100 bet.

 We might want to ask whether this observed frequency of
 success is consistent in some way with the predicted frequen
 cies of the model. In repeated trials, the model purports to pre

 dict that the frequency of success will be ftij for the games be
 tween teams / and j, so the mean of the ,/s provides a reference
 level for our empirical frequency of success. This mean is 0.603
 and is not terribly different from the observed frequency.

 A natural question at this point is: "OK, you seem to be
 doing somewhat better than coin flipping, but 48 games is a
 small sample and you have not shown that you cannot do just
 as well with the classical Gaussian model and least-squares es
 timation." The densities that appear in Figures 3 and 4 are all
 quite unimodal and roughly symmetric looking, so maybe all
 this flexibility of the quantile regression model is just contribut
 ing to noisier estimation of the ratings effects. It is easy to eval
 uate these claims. We simply estimate a least-squares version of
 the rating model, along with the covariance matrix for the scor
 ing pairs. This yields a Pearson correlation of 0.44 for the scores
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 Figure 5. Predictive densities for the point spread of 2005 NCAA tournament games.

 and a standard deviation of the score difference of 9.93 points.
 Given these estimates we can estimate probabilities of the ac
 tual score difference exceeding the closing point spread under
 Gaussian conditions. These estimated probabilities are plotted
 against the corresponding estimates from the quantile regres
 sion model in Figure 7. Not surprisingly, they agree quite well,
 but for eight games appearing in Quadrants II and IV in the
 scatterplot, the two models disagree on what side of the point
 spread one should bet on. These games split four and four so
 the least-squares model also has 27 of 47 successes. We should
 emphasize that, despite the similar overall performance of the
 two sets of predictions, the underlying models are very different

 and the predictions actually conflict in roughly one out of six
 games. The added flexibility of the quantile regression model is
 likely to incur some cost of increased variability, and as usual,
 performance is determined by a balance of bias and variance
 considerations. As sample size increases, bias inevitably dom
 inates and we anticipate that the proposed quantile regression
 approach will dominate.

 The next natural question is: What accounts for this modest
 violation of the Hayek hypothesis? Granted, gamblers may not
 be completely au fait regarding quantile regression, but surely
 they are familiar with the fundamentals of least squares? Where
 are they going wrong? One contributing factor was suggested
 by Camerer (1989) who argued that the market tends to favor
 teams with strings of wins in the apparent belief that teams get
 "hot"?while the evidence suggests, on the contrary, that such
 dependence is illusory. Our modeling, since it assumes inde
 pendent realizations, may, therefore, have some advantage by
 avoiding this momentum misapprehension. But there are, no
 doubt, many other contributing factors.

 7.2 Betting on the Over/Under

 Aficionados will be aware that one can bet not only on scores
 differences, but also on their sum. Like the point spread, a "to
 tal" is posted by bookies and one can bet that the sum of the two
 scores of a given game will exceed or fall short of this number.
 This is the so-called over/under. While betting on point spreads
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 Figure 6. Survival functions for the 2005 NCAA tournament. Ob
 tained by simulation of the quantile regression rating model and using
 the Frank copula model to generate random uniforms.

 has an inherent element of partisanship, one might imagine that
 betting on totals will be an act of pure rationality unsullied by
 the emotions of geography, and thus less likely to reveal market
 inefficiencies.

 Figure 7. Estimated probabilities of success against the point
 spread.

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 QR phat

 Figure 8. Estimated probabilities of success on the over/under.

 As an additional test of the merit of the model, we estimate
 densities for the "totals" for the 48 games of the NCAA tour
 nament based on the qualitative reasoning (QR) model. These
 figures are omitted due to space constraints, but are available
 in the electronic Appendix to the article, together with some
 graphical and numerical results on overall ratings of the 2005
 tournament teams. Two games are ambiguous. One is the West
 Virginia versus Wake Forest game for which the posted total
 was 152.5 and which West Virginia won 111 to 105; the model
 predicted correctly. In the MSU-UNC semifinal game the to
 tal was 158 and the final score was 71 to 87; in such "push"
 cases the original stake is refunded. Of the 47 remaining games
 under consideration, 27 were correctly predicted by the model.
 Curiously the model's prediction of its success rate is almost
 the same with the mean of the maxfir//, 1 ? 7r,y} only 0.574.

 Returning to the question of whether least-squares estimates
 can deliver a similar performance, we re-estimated probabilities
 of success on over/under bets using the mean model. Figure 8
 displays the scatterplot of the predicted probabilities from the
 two models, again with solid points indicating successes and
 open points indicating failures of the QR model. As with point
 spreads, the two models produce quite similar estimated proba
 bilities. There is a conflict over what side to bet on in 11 of the

 48 games, and of these the outcomes split four and seven, so the
 least-squares version of the model predicts 30 of 47 correctly.
 This is astonishingly lucky, but probably should not be taken as
 further evidence, as if any were needed, that Gauss was smart.

 7.3 Betting on Simple Parlays

 Combination bets on both point spreads and totals are called
 parlays, and to conclude this section we evaluate a simple ex
 ample of such a betting strategy. Again, we employ the model to
 predict which of the four possible pairs of outcomes, over/under
 the point spread, over/under the total, is most likely to occur. If
 the point spreads and the totals were fiendishly well set to re
 flect the objective probabilities we expect that each of the four
 quadrants is assigned probability 0.25. But bookies could care
 less about "objective probabilities"?as long as the money is
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 balanced on their bets?they collect the vigorish, typically aris
 ing from the fact that the bettor puts up $110 to bet $100. In our
 48 games of the NCAA tournament, the mean of the maximal
 quadrant probabilities is 0.364. Betting on these parlays wins
 in only 13 out of the 48 games, or in 0.27% of the cases, better
 than guessing randomly, but just barely.

 To evaluate a comparable strategy using the least-squares es
 timates we first evaluate the predicted mean spread and total ac
 cording to the estimated model then, using the estimated covari
 ance matrix for the scores, we compute the orthant probabilities
 of the posted point spread and total given the bivariate normal
 model with this mean and covariance matrix. Again, we choose
 the largest of these four probabilities and bet on this quadrant.
 The QR and least-squares (LS) models agree on which quadrant
 to bet on in only 10 of the 48 games, but the least-squares bets
 get 17 out 48 games right, for a rather impressive 0.35 success
 rate.

 8. REFINEMENTS

 As we suggest in the Introduction, there are many potential
 refinements of the methods we introduce. The rather profligate
 parameterization of the model will undoubtedly benefit from
 some judicious form of regularization?designed to shrink to
 ward common ratings, or toward prior season ratings, for exam
 ple. It may also prove useful to reweight the estimation of the
 rating model to give more credence to games toward the end of
 the season. Much more can be said about gambling strategies
 in this context, but these topics will be left as grist for future
 grinding.

 9. CONCLUSIONS

 A more flexible variant of the classical paired comparison
 model of mean ratings is described and evaluated based on
 NCAA college basketball data. The model permits a wide va
 riety of heterogeneity in teams' offensive and defensive "abil
 ity" and provides a simple mechanism for making predictions
 about the subsequent performance of the teams. The model is
 estimated on a sample 2940 regular season games involving
 232 teams. Out-of-sample predictive performance of the model
 is evaluated based on 48 games of the 2005 NCAA Tourna

 ment. This evaluation reveals mildly favorable betting opportu
 nities against posted point spreads and scoring totals for these
 games. Predictions based on a comparable mean rating model
 estimated by least squares have a somewhat better performance.
 In defense of the added complexity of the quantile regression
 form of the paired comparison model we offer the cri de coeur
 of every sports fan: "Wait until next year!"

 SUPPLEMENTAL MATERIALS

 Appendix: An Appendix containing additional predictive den
 sities for game point totals and team ratings is available from
 the JBES supplementary materials website. (Eapp.pdf)
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