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 But for strong convergence it is necessary that for any

 E >0,

 EPr[ I u,x, I> El < x (1.6)

 n=1

 (see Feller 1968, Vol. 1, p. 201, lemma 2). Note that the

 events in brackets are mutually independent by the iid

 hypothesis on the u's and the design assumption.

 Now suppose F is symmetric and that in the tails,

 F(u)= 1 - l/log2(U). (1.7)

 Then (1.6) becomes, for E= 1 and some no,

 2 E (1 - F(x,)) ::- 2 n'1 (1.8)

 n= 1 n=non

 which diverges. Thus for F satisfying (1.7) and xi = 2',

 we have weak consistency, but not strong.

 Since if either side converges,

 I u I F{du} = [1 - F(u) + F(-u)]du, (1.9)

 existence of a first absolute moment for u is sufficient to

 assure strong convergence. Note, however, that (1.7) is

 worse than mere lack of a first moment. The Cauchy,

 for example, has tails like 1 - llu. Here the 11 estimator,

 which is generally immune to the tail behavior of u, is

 nearly undone because of the explosive design. Fixing

 the tail behavior (1.7) and assuming a strictly positive

 density for u at the median, the results of Bassett and

 Koenker (1978) imply weak convergence of 3 for the

 less explosive class of designs satisfying

 1n

 _-2 D

 ni=1

 for some 0 < D < x. More explosive designs than xi = 2'

 will also serve to restore strong consistency for a fixed

 error distribution. Take F(u) with tails given by (1.7).

 By making the design more explosive, we can obviously

 make the left side of (1.8) converge. This illustrates the

 rather delicate interaction of design and error condi-

 tions in 11 consistency arguments.

 Examples of weak but not strong convergence may

 also be constructed for the least squares estimator.

 These examples are also somewhat pathological, since if

 O< Eu2 < oc, then r3n = Exiyi1/x2 is weakly consistent

 if and only if it is strongly consistent, and the latter

 obtains if and only if Jx2 __o (see Lai, Robbins, and

 Wei 1979). Relaxing the finite variance condition cre-

 ates some scope for excitement. Take the sample mean:

 If tails are sufficiently fat so that E I u = oc, then strong

 consistency fails by the Kolmogorov strong law, but

 weak consistency may still be salvaged. Let F'(u)=

 1/(u2logu) in the tails. Then On = y - 0 in probability

 (see Chung 1974, p. 111). As in the 11 case, consistency

 of the least-squares estimator may be salvaged by mak-

 ing the design sufficiently explosive. For example,

 Chen, Lai, and Wei (1981) showed that if F is Cauchy

 in (1.1) and

 n (log n)l(>x?) = 0 (1)

 for some > 3, then ,B -~ 0 almost surely.

 2. CONSISTENCY WITHOUT

 CESARO IDENTIFIABILITY

 Again consider the model

 Yi=X13i+ Ui, (2.1)

 with ui iid F and F symmetric about 0, but now let

 xi= N/k for i = k(k - 1)/2 for some integer k

 = 0 otherwise.

 Thus, (1/n)E7=I x7 2- 1, and if F has median 0 and con-

 tinuous, positive density f(O) at the median, then by

 Bassett and Koenker (1978),

 VG-r - N(0, (4f(0))'). (2.3)

 Thus a fortiori, 3 is consistent for ,.

 Now consider, however, the limiting behavior of the

 objective function V(b). In particular, we wish to con-

 sider the limiting behavior of n -'[V(b) - V(0)] or,

 equivalently, setting 8 = b -

 Vn(8) =(11n) ui - xi 8- uij

 <(11n)z Xi 81

 Typically, in nonlinear estimation problems, we would

 require that Ev,(8) have a unique minimum at 8 = 0.

 Such a condition is required, for example, in Ober-

 hofer's (1982) paper on 11 consistency; see Gallant, Bur-

 guete, and Souza (1983) for a detailed discussion of this

 general approach. But in the present example, letting

 n = k(k - 1)/2 for some integer k,

 n

 Ev,,(8) (8 1 n) |Xi

 i= -

 =(2181 lk(k - 1))[1 + V2_+ ...+ Vk]

 c(218 1k Vk )Ik (k - 1)

 0.

 Thus the mean of the objective function converges to

 zero in any neighborhood of 0, and thus the typical

 identifiability condition fails. Nevertheless, \/?- 1 con-

 verges in distribution! This example differs from similar

 examples involving the least-squares estimator (e.g.,

 see Wu 1981, where least-squares consistency is sal-

 vaged without Cesaro identifiability, but convergence in

 distribution occurs at rates slower than the conventional

 1/V'n ).

 3. PATHOLOGICAL CONVERGENCE

 IN DISTRIBUTION

 We turn to an example in which the design in (1.1) is

 simply xi-1, 50 ,B is simply the sample median from a

 random sample from F. When F has a continuous and

 strictly positive density, say f(0), at the median, it is

 well known that

 \'?(,B-1) -~N(O,(4f2(0))-1). (3.1)
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 What happens when f(O) = O? Suppose, for a=

 (log 2) -1/,

 F(x) =1 a < x

 = + e -x-2 0<X a

 =2 X=0

 = -x-2 -a?x<O

 =0 x <-, (3.2)

 so F has a unique median of zero, and not only is

 f(O) = 0, but all higher order derivatives of F are also

 zero at zero.

 The sample median a minimizes

 n

 Vn(b) =ElYi-b 1, (3.3)

 1=1

 so 3 < z if and only if the gradient

 n

 gn(Z) - Esgn(yi - z) > ? (34)

 where sgn(u) = 1 if u -0 and = -1 otherwise. Note that

 since F is absolutely continuous, y = z with probability

 0. Let {An} be a sequence such that Xn ->x as n -c.

 Then

 Pr[\n 3 < z] = Pr[gn(z/Xn) > 0]

 = Pr[(gn(Z /Xn)- Egn)/lvargn

 >-Egn/v'arg], (3.5)

 where

 Egn = n [1 - 2F(z /Xn)] (3.6)

 and

 vargn = 4n[F(zXAn)(1 - F(z/1n))1 (3.7)

 Now (gn - Egn)/(vargn)"12 is a standardized binomial

 random variable with probability of success pn - 1/2 as

 z/n 0, and therefore it converges in distribution to a

 standard Gaussian law.

 We would like to choose {Xn} so that - Egn/(vargn)"12

 converges to something that is bounded away from 0.

 Since var gn- n for any An xC,

 n [1 - 2F(z/Xn)]=j [-2eIz2 * e - (3.8)

 must stay away from 0. Choosing Xn = (log -/? )1/2 yields

 Pr[X, p < z]- Pr[Z > 2e -z 2] (3.9)

 where Z is a standard Gaussian random variable. The

 density function of the limiting distribution is

 f (x) = 4)(2e -x-2) 14e -x-2X -31 (3.10)

 where + denotes the standard Gaussian density. The

 density is depicted in Figure 1.

 Thus not only is the rate of convergence considerably

 slower than the typical rate i/iv?, the limiting distribu-

 tion is also bizarre.

 0.7
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 Figure 1. The Limiting Density of the Normalized Sample Median

 by Random Sampling From the Distribution Function (3.2).

 4. CONSISTENCY WITH HARMONIC DESIGNS

 When ,x2 < c, convergence of x typically fails, as

 does the consistency of the least-squares estimator. The

 present example shows, however, that the consistency

 of , the 11 estimator, may be salvaged if F has sufficient

 mass at the median.

 Consider the harmonic design xi = 1/i. In this case

 xi2 -rr2/6 (Knopp 1956, p. 173), so n -l 'x? 0. As

 in the previous section, with 8 > 0,

 Pr[p3 - 3 < 8] = Pr[g,(8) > 0], (4.1)

 where now

 n

 gn()= ->Esgn(ui - xi 8)xi. (4.2)

 So

 Pr[Pn - < 8] = Pr[hn() > -11, (4.3)

 where

 hn()= (gn()- Egn(M))lEgn(b) (4.4)

 Now

 varhn() =(Egn(b) )2 - [j(1i )(1 -2F(bli ))]

 which converges to zero if and only if the denominator

 diverges. Suppose in a neighborhood of 0, F is sym-

 metric with

 F(u) = 1/2 + 1/log2(1/u), u >0; (4.6)

 then for some no > 0, the denominator becomes

 (Egn(ti2 = [Z2(i 1og2(i/ ))-12, (4.7)

 which diverges. Thus by the Chebyshev inequality,

 hn(5) converges in probability to zero, and hence the

 left side of (4.3) converges to one. An identical argu-

 ment implies that Pr[-(,Bn - ,B) < 5-> 1 as well.

 Thus we have an example in which the usual design

 condition Ex - x is violated, but the weak consistency

 of ,B is salvaged by making the density of u sufficiently

 large near the median. The least-squares estimator is

 inconsistent under these conditions, of course, unless F

 is actually degenerate at 0.

 [Received September 1983. Revised March 1984. ]
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