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Abstract: Quantile regression is proposed for modeling game outcomes and as the basis for
rating teams. The model includes the standard location model for team strength as a special case,
while allowing for a richer specification in which teams differ according to the quantiles of the
outcome distribution. Team ratings are defined as the handicap needed to equalize the outcome of
a contest. With teams differing by quantiles, this leads to a class of ratings that depend on where
in the outcome distribution the outcome is equalized. Relationships with betting games are discussed.
The approach is illustrated by rating National Football League (NFL) teams based on game results for
the 2005 season.
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1 Introduction

What does it mean when Team A is ranked number one and Team B is ranked
number two? One interpretation is that if A and B were to play on a neutral site
(no home-field advantage) then A would on average win by s > 0 points. To make
the contest evenly matched requires giving s points to the lower ranked Team B. If
DAB denotes A’s score minus B’s score, then ‘A better than B’ if E(DAB−S ) = 0 for
some s > 0.

Alternatively, ‘A better than B’ could mean that A has a better than 50–50 chance
of beating B. Instead of being about the average victory margin, this interpretation
is about who is more likely to win the game. Expressed in handicap terms it means
giving points to B in order to make the handicap-adjusted outcome 50–50; ‘A better
than B’ if there is a z > 0 such that Pr(DAB−Z > 0) = Pr(DAB−Z < 0) = 0.5.1

Both these interpretations (and others) are reasonable. But they are different—
expected and median values of a random variable need not agree—and can lead to
different ratings and rankings. This means that the ranking depends on how ‘A better
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1For ease of exposition here and in the following, we ignore discrete, integer, scoring, and suppose D
to have a continuous range of outcomes.
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than B’ is interpreted. We can have ‘A better than B’ based on the expected outcome,
while at the same time B is more likely to win the game.

For many of the standard models the alternative ranking interpretations are
restricted to be equivalent. For example, consider the linear model, Pr(DAB < z) =
Fo(z − (βA − βB)) where Fo is a symmetric-about-zero probability distribution and
the βs are relative strength parameters for each team. For the paired comparison
case, observations are indicators, I [DAB > 0], (Team A or B wins the contest) and
the probability that A beats B is Pr(DAB > z) = Fo(βA − βB); see David (1988: 7).
The Thurstone-Mosteller (normal) and Bradley-Terry (Zermelo) models correspond
to alternative specifications of Fo. In this case the different rankings are all identical
and correspond to the ordering of the βs—because the model only allows teams
to differ by a location parameter. It follows that ‘A better than B’ at the expected
value implies ‘A better than B’ at the median as well as at every other part of the
distribution.

This contrasts with the quantile model considered here. The model allows for a
richer description of the outcomes when A plays B so that alternative ranking criteria
can lead to different rankings. Compared to the standard approach where teams only
differ by location, the quantile model expresses relationships that can vary depending
on the quantiles of the distribution. It means that the ratings are allowed to depend
on how, ‘A better than B’ is interpreted.

In this paper, ratings are defined as the handicap needed to make handicap-
adjusted outcomes evenly matched. However, as suggested earlier ‘equally matched’
depends on which property of the outcomes is equalized. The handicap needed to
equalize the expected scores of the two teams can differ from what is needed to
equalize the chances of winning. The usefulness of the quantile model is that it can
express these different versions of ‘equally matched’. Hence, ratings and rankings
ultimately depend on how ‘A better than B’ is interpreted.

The ratings are illustrated for the 32 NFL teams based on outcomes of all 2005
regular season games. The ratings are compared at the mean as well as at other parts
of the outcome distribution. Interest is in assessing differences in the ratings and
rankings according to the different criteria.

Ratings for the paired comparison model are based on win/loss outcomes. For
the history of paired comparison models and approaches see David (1988:11–14).
Harville (1977) was the first to propose the linear model for rating sports teams
based on point differentials. For more recent discussions of sports rating issues see
Stern (1995, 2004), and Frey (2005). The least absolute value estimator or L1
estimator, which is the 0.5 regression quantile, was proposed for rating teams in
Bassett (1997), but the motivation was robustness, rather than ratings at alternative
parts of a distribution. For comprehensive review of general quantile modeling
and estimation see Koenker (2005), Koenker and Bassett (1978), and Koenker and
Hallock (2001).

The next section introduces the quantile model and defines the ratings in terms
of point-equalizing handicaps. Section 3 discusses relationships between the ratings
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and different wagering games. Section 4 discusses estimation issues including the
home field advantage and incorporating constraints due to the nature of the paired
comparison data. Section 5 presents ratings for the NFL teams based on the
alternative rating criteria. While the alternative rating criteria sometimes lead to
similar rankings, there are also cases where there are large differences that depend
on where comparisons are made in the outcome distribution.

2 Teams, leagues, handicaps

2.1 The quantile model

A league consists of T teams, 1, …, T. A game is a contest between a pair of teams. To
present the ranking and rating ideas, we initially suppose that there is no home-field
advantage, as if all the contests are at a neutral site.

The outcome when i plays j is a random variable denoted by Dij = Si − Sj team
i’s score minus j ’s score (so Dji = −Dij ).2 The distribution and quantile functions
of the Dij are denoted by Fij and Qij , respectively.

As noted earlier, the outcome distributions with the standard linear model are
identical except for location. That is, Dij = βi − βj + ε, and the quantile functions
are Qij (θ) = Qo(θ) + βi − βj , where Qo(θ) is the symmetric3 quantile function of
ε. In this case the βi are relative strength parameters that location-shift the outcome
distribution (‘relative’ because the rating values are determined up to an additive
constant).

The quantile model generalizes the standard approach by allowing team effects
to vary depending on the quantile of the distribution; the quantile function of Dij ,
i < j , is

Qij (θ) = Qo(θ) + βi(θ) − βj (θ)

where Q0 is a symmetric (around zero) quantile function.
To understand what the model says about outcomes, first notice that Qo(θ) is

the quantile function for two evenly-matched teams, (βi(θ) − βj (θ) = 0, all θ ). If
the contest is instead between team i and team j where βj (θ) = 0, all θ then βi(θ)

represents how team i alters outcomes relative to what would have happened in an

2Let Sij be the total points scored when i plays j . In this paper we restrict attention to ratings and
rankings based on the differential, Dij = Sij − Sji , and leave to future research the modeling and
estimation of Sij . The model for Sij leads to separate offensive and defensive ratings (points scored
by i’s offense against j ’s defense) as well as an estimate of the total points scored by both teams, the
so-called over/under.
3Since Dji = −Dij the quantile functions for j > i satisfy, Qji(θ) = −Qij (1 − θ), which means
Qo(θ) = −Qo(1 − θ).
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evenly-matched contest. If βi(θ) > 0 the outcomes are shifted in favor of team i.
In the special case where βi(θ) = βi , a constant for all θ—the standard model—
the distribution is distorted by the same βi at all parts of the distribution. In the
general case, however, the distortion is θ -dependent, larger or smaller depending on
the magnitude of βi(θ) > 0.

To express the outcome Dij so that it has quantile function Qij , recall that the
random variable D = Q(U), U uniform, has quantile function, Q. Hence, Dij =
Q0(U)+βi(U)−βj (U), is the random variable with the quantile function Qij . (Note
that the same U determines Q0(U), βi(U) and βi(U)—they are comonotonic; see
Koenker (2005) for connections between comonotonicity and regression quantile.)

Remarks: (1) The βi(θ), i = 1, . . . , T themselves are not quantile functions. For one
thing they are not restricted to be monotone in θ . They can be viewed as the amount
needed to turn an evenly-matched contest into one between unevenly-matched teams.
(2) The βi(θ) are not arbitrary. Since Qij (θ) is a quantile function, it is increasing, and

hence the βi(θ) satisfy, qij (θ) = qo(θ)+ dβi(θ)
dθ

− dβj (θ)

dθ
> 0, where qij (θ) = f (Q(θ))−1

denotes the derivative of Qij .

2.2 Ratings

Team ratings are numerical values denoted by δ1, . . . , δT . The rankings are the ordinals
obtained from the rating vector with the top rated team ranked ‘1’, to the lowest rated
team (assuming no ties) with rank ‘T’.

The δi will be defined so that handicap adjusted outcomes result is an evenly
matched contest. Let HDij denote the handicap adjusted outcome when i plays j ,
HDij = Dij −(δi −δj ). The δi −δj indicate how the score must be adjusted to equalize
the outcome. Except in special cases (which correspond to the standard model) the
handicap varies according to the outcome-property to be equalized.

The ratings that equalize the probability of winning are denoted by δi(0). They
are defined so that the handicap-adjusted probability that i beats j is the same as the
probability that j beats i, Pr[HDij > 0] = Pr[HDji > 0], or 1−Fij (δi(0)−δj (0)) =
Fij (δi(0) − δj (0)). This says that δi(0) − δj (0) is the median of Dij . For the quantile
model where the median of Dij is βi(0.5) − βj (0.5) the team ratings therefore are,
δi(0) = βi(0.5), i = 1, . . . , T .

The ratings, δi(0), will correspond to the s = 0 special case of ratings denoted
by δi(s). Select a value for s, s > 0 and consider the events: (a) i beats j by more
than s points; (b) j beats i by more than s points. We want to select handicaps so
that these events have the same probability. That is, Pr[HDij > s] = Pr[HDji > s],
or, 1 − Fij (δi(s) − δj (s) + s) = Fij (δi(s) − δj (s) − s). Expressed in terms of the
quantile functions this says, δi(s) − δj (s) = 1/2[Qij (θ) + Qij (1 − θ)], where, s =
0.5[Qij (1 − θ) − Qij (θ)].
Statistical Modelling 2007; 7(4): 301--313
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For the standard model in which the β(θ) do not depend on θ this means,

δi(s) − δj (s) = 0.5
[
Qij (θ) + Qij (1 − θ)

] = 0.5
[
Qo(θ) + βi − βj

+ Qo(1 − θ) + βi − βj

] = βi − βj

so that δi(s) = βi for all s, that is, the same rating holds for any s.
For the quantile model, in contrast, the ratings depend on where in the distribution

outcomes are equalized. That is,

δi(s) − δj (s) = 0.5[Qij (θ) + Qij (1 − θ)] = 0.5[Qo(θ) + βi(θ) − βj (θ)

+ Qo(1 − θ) + βi(1 − θ) − βj (1 − θ)]
= 0.5[{βi(θ) + βi(1 − θ)} − {βj (θ) + βj (1 − θ)}]

So that the rating for team i is δi(s) = 1/2[βi(θ) + βi(1 − θ)].
Notice that the score-parameterized ratings can be alternatively represented by

the probability values they equate. Instead of δi(s) we could write δi(θ). Depending
on the context we will variously refer to the ratings by δi(s) or δi(θ).

Finally, the ratings that equalize expected outcomes are denoted by δE
i . These are

defined so that, E(HDij ) = 0, all i, j , or, E(Dij ) − (δE
i − δE

j ) = 0. For the general
quantile model this means δE

i is the integral over all the quantile ratings, θ in (0, 1)

(that is,
∫ 1

0 Q(θ)dθ = ∫
xdF(x)). This is trivially also true in the special case of the

standard model where all the quantile effects are identical.

3 Point spreads, odds, ratings

This section examines the relationship between ratings and various wagering games
such as point spreads and odds. In an earlier comparison, Bassett (1981), one of the
questions was how point spread betting (a wager at even odds on the point spread
adjusted winner) would map to odds betting (a wager on the outright winner but at
variable odds). We first consider a general wagering game whose equilibrium values
trace out the consensus beliefs/probability distribution about the contest. When this
distribution satisfies the location-shift model, there is a one-to-one correspondence
between point spreads and odds. The correspondence, however, fails if beliefs follow
the quantile model. It means that for teams i and j , a point spread of 7 points can
correspond to an odds of 3:1, whereas the same spread of 7 points for teams i and
k can translate to an odds of 4:1. The section concludes with a description of the
betting game that gives rise to the ratings as handicaps.

Consider wagers, depending on s and θ , presented in Table 1.
There are two possible wagers: an ‘i’ bet on the event Dij − s > 0 (‘i’ beats the

spread) or a ‘j ’ bet Dij − s < 0 (‘j ’ beats the spread). For each outcome the net
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Table 1 Point spread and odds wagers

Wager (s : θ)

Event: team wins Handicap adjusted event i bet: (Dij − s > 0) j bet: (Dij − s < 0)

‘i ’ bet Si − Sj = Dij > 0 Dij − s > 0 θ/(1 + θ) −θ/(1 + θ)

‘j ’ bet Si − Sj = Dij < 0 Dij − s < 0 −1 1
Dij − s = 0 0 0

payoff is presented in the table. The wager on ‘i’ pays $ θ/(1+ θ) in case Dij − s > 0,
but loses $ 1 if Dij − s < 0 (there is no change in wealth when Dij − s = 0. In a
similar fashion the table shows the payoffs for a wager on the other team, ‘j ’. The
standard point spread betting game corresponds to (s, 0.5), while the odds wagering
game is (0, θ ).

An equilibrium (s, θ ) is defined so that a bookie’s profits are perfectly hedged and
do not depend on the outcome of Dij . Solving for the equilibrium s, θ gives: {(s, θ)|
Pr(j : s, θ) = θ} where Pr(j : s, θ ) denotes the proportion of ‘j ’ bets in the market.4
If, in addition, it is assumed that the proportions adjust so as to eliminate wagers with
positive expected value then the equilibrium set will be the graph of the distribution
or quantile function, {s, θ |θ = Fij (s)} = {s, θ |s = Qij (θ)}.

For the standard model, where the distribution of Dij is F0(βi−βj ) the equilibrium
values are given by {s, θ |θ = F0(βi − βj )} = {s, θ |s = Q0(βi − βj )}. The point spread
game (at even odds) has point spread, βi − βj . The odds game on the winner of
the contest (s = 0) has odds of θ = F0(βi − βj ). We see that there is a one-to-one
relationship between the odds and the point spread with the odds θ = F0(βi − βj )

and the point spread s = Q0(θ).
For the quantile model, however, there need not be a mapping from the point

spread to the odds that is independent of the teams. The point spread when i plays
j is given by, sij = βi(0.5) − βj (0.5), whereas the odds are determined so that,
Fij (0) = θij , where Qij (θ) = Q0(θ)+βi(θ0)−βj (θ0). A point spread of 7 points for i

and j can correspond to odds of 3:1, whereas the same spread of 7 for i and k means
odds of 4:1.

Finally, we identify the wagering game whose equilibrium corresponds to the
handicaps that generate the rating values defined in the previous section. In this game
each wager is a point spread bet (at 1:1 odds), but instead of being on the (point
spread adjusted) event that a team wins the game, it is on the (point spread adjusted)
event in which a team wins by at least z points.

4 That is, let N denote the total number of wagers, Pr(i:s, θ ) the proportion of bets on ‘i’, and
1 − Pr(i:s, θ ) the proportion of bets on ‘j ’. If the outcome is Dij − s > 0 the bookie’s profits
are, N(−[θ/(1 + θ)](1 − Pr(i:s, θ) + Pr(i:s, θ ))). If, instead, the outcome is Dij − s < 0, profits
are N([0/(1 + 0](1 − Pr(i:s, θ) − Pr(i:s, θ ))). Solving gives the equilibrium.

Statistical Modelling 2007; 7(4): 301--313
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Table 2 Point spread wagers on winning by more than z points

Wager s(z)

Event: team wins by z ≥ 0 points Handicap adjusted i bet: (Dij − s > z) j bet: (Dij − s < −z)

‘i ’ bet Si − Sj = Dij > z D − S > z 1 −1
‘j ’ bet Si − Sj = Dij < −z D − S < − z −1 1

−z < Dij < z z < D−S > z 0 0

For a given z > 0, the game is defined in Table 2. Wagering is on the team that
wins by at least z points where z is pre-specified. The point spread s is now set to
equalize the proportion of bets on a team winning by z or more points.

Let Pr(‘i’:z, s) denote the proportion of wagers on team i given z and s, so that
1 − Pr(‘j ’:z, s) = 1 − Pr(‘i’:z, s) is the proportion of bets on team j . Solving as
earlier, we find that the bookie is hedged by setting s so that the proportion of bets
on i and j is equal. Further, in order that neither wager has positive expected value
gives Pr{‘i’:z, s} = Pr{Dij − s > z} = 1 − Fij (z + s). Finally, if the Dij follow the
quantile model then the equilibrium condition, 1 − Fij (z + s) = Fij (s − z) is satisfied
by s = δi(z)−δj (z) where δi(z) = 0.5[βi(θ0)+βi(1−θ0)]. This identifies the wagering
game that generates the ratings.

4 Estimation: home-field, symmetry, weighting

Ratings are estimated based on outcomes of the 256 regular season games in the 2005
NFL regular season.5 The teams in contest g = 1, . . . , 256, are i(g), j(g), i < j . Each
contest has a home team, h(g), and an away team a(g). We assume there is a home-
field advantage denoted by h0, which does not depend on the teams and is the same
at each home site. The home field shifts expected outcomes in favor of the home team
by h0 over what would have happened at a neutral site. The Dg = Di(g)j(g), i < j ,
are independent with quantile function,

Qg(θ) = Qi(g)j(g)(θ) = h0I [i(g) = h(g)] − h0I [i(g)

= a(g)] + Qo(θ) + βh(g)(θ) − βa(g)(θ)

where Q0(θ) is symmetric about zero.

4.1 Home-field

The home-field parameter is estimated from the conditional expectation model using
ordinary least squares. The conditional expectation model is:

5 Data was obtained from Kenneth Massey (2006) website.
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E
(
Dh(g), a(g)

) = h0 + βE
h(g) − βE

a(g).

The estimate for the home-field advantage in 2006 is 3.64. The estimates for βE
i are

presented below after discussing the quantile estimates.
The quantile coefficients are estimated after first adjusting the outcomes by the

home-field advantage, Dg = Di(g)j(g) − 3.64, which has quantile function,

Qij (θ) = Qo(θ) + βi(θ) − βj (θ).

4.2 Symmetry

The symmetry constraint, Q0(θ) = −Q0(1−θ) is imposed on the estimates by jointly
estimating the θ and 1 − θ regression quantiles. This is done by solving the ‘stacked’
problem,

[Q̂o(θ), β̂(θ) : −Q̂o(θ), β̂(1 − θ)] = arg min(a,b1),(a,b2){Sθ(a, b1 : D, X)

+ S1−θ (−a, b2 : D, X)}
where Sθ(a, b : D, X) is the criterion function for the θ th regression quantile, D is the
vector of team scores and X is the associated design.6 This imposes symmetry on the
intercept while allowing the quantile team coefficients to be separately determined at
θ and 1−θ . (The minimization problem (in θ and 1−θ ) can be reduced to one in only θ
by noting that for the special team design, S1−θ (−a, b2 : D, X) = Sθ(a, b2 : −D, −X)).

4.3 Weighting

The quantile regression estimates are not guaranteed to be unique because they solve
a polyhedral convex minimization problem. This non-uniqueness is the linear model
version of ‘jumps’ in the ordinary sample quantile function, or the interval of medians
that occurs with an even number of observations. For general designs, non-uniqueness
is not important because it is rare and, if it does occur, unique estimates are achieved
with an epsilon perturbation of the design.

For the paired comparison design, however, non-unique estimates tend to be
the rule. To make the estimates unique with an arbitrary, though slight, change
in the design is not reasonable because it introduces arbitrariness into the ratings
and rankings. To resolve non-uniqueness we propose instead (similar to what was
done with the L-one estimate [see Bassett 1997:102]) to use a weighted estimate
that puts slightly more weight on more recent observations. The resulting weighted

6 See Koenker (1984) who uses stacking for testing constrained and unconstrained models.
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estimates are unique and plausibly attribute more information about current team
strength to more recent performances.7 For the estimates reported below outcomes
are weighted by (1 + 0.0001*week) where week refers to the week of the game. The
first week of the season is week ‘1’ while the final week with the most recent outcome
is week ‘17’.

Remark: We know that Dij = −Dji so that E(Dij ) = −E(Dji) = −E(−Dij ).
Similarly, Median(Dij ) = −Median(Dji) = −Median(−Dij ). But the quantiles do
not satisfy these equivariance properties. The quantiles for ‘ij ’ and ‘ji’ are related
by Qij (θ) = −Qji(1 − θ) so that θ th quantile, (θ �= 0.5) of Dij will generally not
be the same as minus the θ quantile of Dji . To say the same thing, Dij and −Dij do
not have the same quantile functions. An implication is that for quantile estimation
(with θ �= 0.5) one has to be careful about data entry when the same two teams
play multiple contests against each other (as occurs with the NFL schedule). To fix
ideas, let the contestants for games 1 and 2 be the same two teams, 5 and 6: i(1),
j(1) = (5, 6) and i(2), j(2) = (5, 6). Suppose the outcomes of the games are D1 = 7
and D2 = −10, which means team ‘5’ won the first game by 7 points while team ‘6’
won the second game by 10 points. We could write the first two outcomes as (7, −10)
with a design, β5 − β6 for the first outcome and β5 − β6 for the second outcome. Or,
we could write the outcome as (7, 10) with β5 − β6 for the first outcome and β6 − β5
the second outcome. Either of these works when estimating the expected value or
median (and least squares and the 0.5 regression quantile, the least absolute error
estimator, are invariant to either specification). To estimate the θ th quantile however
we cannot have S5 − S6 = 7 for game one, and S6 − S5 = 10 for the second game
even if we reverse the β-team designation in the design. The reason is that the θ th
quantile (θ �= 0.5) for S5 − S6 is not the same as the θ th quantile S6 − S5.

5 NFL ratings and rankings

The quantile regression coefficients for deciles 0.1 to 0.9 are presented in Table 3.
Also included is the least squares estimate. The intercept for least squares is zero
because the home field estimate (3.64) has been subtracted from the outcomes. The
quantile intercepts satisfy the symmetry constraint.

Tables 4 and 5 present the ratings and rankings for each team. In terms of the rating
values we see that Indianapolis with a score of 12 at the median is 5.4 points better
than Chicago which has a 6.6 rating. On the other hand, Indianapolis is 9.3 point
favorite in terms of the expected value (10.8 − 1.5 = 9.3). Comparing Indianapolis
and Carolina at θ = 0.5 we see that Indianapolis is a 10-point favorite (12 − 1.6)
whereas at the expected value it is only about a 5-point favorite.

7 We do not consider the problem of how to best calibrate the weights (how much should early season
losses weigh in the determination of end of season ratings?).
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For some teams the alternative rating criteria lead to similar estimates.
There is general agreement that the top three teams are Indianapolis, San Diego
and Denver. After the top three teams there are sometimes major differences. For
example, Chicago is ranked fifth in the middle of the distribution but much worse in
the other parts of the distribution, and its rating based on expected values is 14th.
Kansas City on the other hand is ninth best in the middle of the distribution but
fourth at the 0.9 quantile. Similarly, Carolina is in the middle of the pack, 14th in
the middle, but third in the tail. When Carolina does win, it evidently is by a large
margin.

The superbowl winner, Pittsburgh, ranks high under all criteria, but never number
one. Perhaps its championship was due to luck, and the more likely champion should
have been Indianapolis, San Diego or Denver. But it is also possible that a different
calibration would favor Pittsburgh. Recall that the estimates give equal weight to all

Table 4 NFL ratings 2005 regular season

θ 0.5 0.6 0.7 0.8 0.9 E()

s −0.2 3.3 6.2 9.4 13.3
Indianapolis 12.0 13.9 11.5 10.1 6.3 10.8
San Diego 9.8 8.1 9.3 7.0 11.0 9.9
Denver 9.4 10.6 11.7 13.6 13.7 10.7
Pittsburgh 7.8 6.3 5.9 4.4 4.3 7.8
Chicago 6.6 1.6 1.8 2.1 0.9 1.5
NY Giants 6.2 6.6 7.5 5.4 8.0 7.0
Seattle 5.8 6.4 8.7 10.5 8.5 9.0
Washington 5.4 7.1 7.9 6.3 5.7 5.9
Kansas City 5.2 7.4 6.5 7.7 8.8 6.9
Jacksonville 4.6 5.7 6.3 4.9 5.5 4.7
Minnesota 4.4 −0.4 −3.0 −4.2 −0.4 −3.5
Dallas 4.0 4.4 3.6 1.6 −0.8 3.0
Tampa Bay 2.4 −0.1 0.2 −2.1 −2.7 −0.9
Carolina 1.6 3.2 6.3 7.0 8.9 5.2
Cincinnati 1.6 4.3 1.6 −1.2 −2.4 3.8
New England 0.4 2.7 3.9 6.8 2.0 3.2
Atlanta 0.2 −1.4 −0.2 3.3 3.1 −1.1
Philadelphia −0.4 −3.7 −3.9 −4.1 −4.8 −2.4
Green Bay −2.0 −4.6 −1.7 −1.0 −5.7 −3.7
Cleveland −2.0 −3.3 −4.3 −4.0 −4.6 −4.2
Baltimore −2.6 −0.2 −4.5 −4.3 −1.5 −1.8
Detroit −2.8 −4.1 −6.2 −7.4 −7.0 −6.6
St Louis −4.8 −6.4 −7.1 −4.4 −4.0 −5.2
Arizona −5.8 −4.4 −4.4 −4.2 −4.3 −5.0
Buffalo −5.8 −4.6 −5.9 −6.7 −3.0 −5.8
Oakland −6.2 −5.6 −3.1 −4.7 −2.7 −2.9
New Orleans −8.0 −8.7 −9.6 −8.5 −7.7 −10.6
Miami −8.2 −3.8 −2.9 −1.9 −1.1 −0.7
NY Jets −9.2 −7.4 −6.1 −4.7 −2.2 −6.3
Houston −9.4 −10.1 −11.0 −10.2 −11.9 −10.0
San Francisco −9.8 −10.7 −10.2 −10.2 −12.9 −11.2
Tennessee −9.8 −8.8 −8.8 −6.8 −6.9 −7.6
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Table 5 NFL rankings 2005 regular season

θ 0.5 0.6 0.7 0.8 0.9 E()

s −0.2 3.3 6.2 9.4 13.3
Indianapolis 1 1 2 3 7 1
San Diego 2 3 3 5 2 3
Denver 3 2 1 1 1 2
Pittsburgh 4 8 10 11 10 5
Chicago 5 14 13 13 13 14
NY Giants 6 6 6 9 6 6
Seattle 7 7 4 2 5 4
Washington 8 5 5 8 8 8
Kansas City 9 4 7 4 4 7
Jacksonville 10 9 8 10 9 10
Minnesota 11 17 19 21 14 21
Dallas 12 10 12 14 15 13
Tampa Bay 13 15 15 18 21 16
Carolina 14 12 9 6 3 9
Cincinnati 14 11 14 16 19 11
New England 16 13 11 7 12 12
Atlanta 17 18 16 12 11 17
Philadelphia 18 20 21 20 26 19
Green Bay 19 25 17 15 27 22
Cleveland 20 19 22 19 25 23
Baltimore 21 16 24 23 17 18
Detroit 22 22 27 29 29 28
St Louis 23 27 28 24 23 25
Arizona 24 23 23 22 24 24
Buffalo 24 24 25 27 22 26
Oakland 26 26 20 25 20 20
New Orleans 27 29 30 30 30 31
Miami 28 21 18 17 16 15
NY Jets 29 28 26 25 18 27
Houston 30 31 32 31 31 30
San Francisco 31 32 31 31 32 32
Tennessee 31 30 29 28 28 29

outcomes. Games played in the first week of the season are just as important as games
in the last week. To win playoff games and eventually the Super Bowl, it is plausible
that late-season games are a better indicator of team strength so that greater weight
on late-season games would give a better ranking of teams at the end of the season.
Calibrating weights is a topic for further study.8

8 Another topic for future research is how to combine the quantile estimates into a single ranking. For
example, it might be reasonable to base rankings on the outcome of a round robin. The NFL schedule
is not a round robin, but with the quantile estimates we can estimate and then derive a ranking based
on the expected number of wins for each team in a round robin tournament.
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6 Summary

We have shown how team ratings and rankings depend on where in the distribution
the rating problem is formulated. Teams rated best on one criterion can be lower on
another. We have shown how the quantile regression model can be used to formulate
the rating question and estimate the ratings based on game outcomes.

Given the sometimes conflicting answers to the rating question, it is tempting
to ask who really is best. How can the ratings be aggregated into an answer that
declares which truly is the top team? While a single rating answer does emerge from
the standard approach, it is an artifact of the location-shift model. This contrasts with
the quantile regression approach that allows the data to determine the ratings and
rankings. In the end, the answer to who is best, of where to place your bets depends
on where in the distribution outcomes are compared.
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