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 Econometrica, Vol. 50, No. 1 (January, 1982)

 ROBUST TESTS FOR HETEROSCEDASTICITY BASED ON

 REGRESSION QUANTILES

 BY ROGER KOENKER AND GILBERT BASSETT JR.'

 A new class of tests for heteroscedasticity in linear models based on the regression

 quantile statistics of Koenker and Bassett [17] is introduced. In contrast to classical

 methods based on least-squares residuals, the new tests are robust to departures from

 Gaussian hypotheses on the underlying error process of the model.

 1. INTRODUCTION

 THE CLASSICAL THEORY of linear statistical models is fundamentally a theory of

 conditional expectations.2 In their influential text Mosteller and Tukey [19] note

 that,

 "What the regression curve does is give a grand summary for the averages of the

 distributions corresponding to the set of x's. We could go further and compute several

 different regression curves corresponding to the various percentage points of the distribu-

 tions and thus get a more complete picture of the set. Ordinarily this is not done, and so

 regression often gives a rather incomplete picture. Just as the mean gives an incomplete

 picture of a single distribution, so the regression curve gives a correspondingly incomplete

 picture for a set of distributions."

 Means and other measures of central tendency rightfully occupy a distin-

 guished place in the theory and practice of statistical data analysis. But we are

 entitled to ask, "Does the conditional expectation or any other measure of

 conditional central tendency adequately characterize a statistical relationship

 among variables?" An affirmative answer seems possible only within the confines

 of extremely restrictive parametric models. In principle, we would like to know

 the entire conditional distribution function, or equivalently, but perhaps prefera-

 bly (see Parzen [20]), the conditional quantile function.

 In this paper we suggest a natural approach to the estimation of the condi-

 tional quantile function based on the analogues of the sample quantiles for linear

 models introduced in Koenker and Bassett [17]. The asymptotic theory of these

 regression quantiles is extended to linear models with a family of linear scale

 processes. The problem of estimating the precision of these "regression quantile"

 estimates is addressed, and a new robust approach to problems of testing

 homoscedasticity is developed. Several examples of the proposed techniques are

 discussed in a final section. The emphasis here is rather different than our

 'The authors wish to thank Robert Hogg and Colin Mallows for helpful comments on a previous

 draft. We are also deeply indebted to an anonymous referee whose "rough calculations" on an

 example stimulated an extensive revision of Sections 3 and 4. Complete responsibility for remaining

 errors and malapropisms rests with the authors.

 2An exposition of least squares theory from this point of view may be found in a valuable

 monograph by Goldberger [14].
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 44 R. KOENKER AND G. BASSETT JR.

 previous work on regression quantiles which emphasized robustness consider-

 ations within linear models with iid errors.

 2. NOTATION AND PRELIMINARIES

 Given a random variable Y with right continuous distribution function F(y)

 = Pr[ Y y], it is useful to define the quantile function, on u E [0, 1],

 (2.1) QY (u) = F - I(u) = inf { y I F(y) _ u}.

 Similarly, given a random sample Y,, Y2,..., Y,, with empirical distribution

 function, F(y) = (1 / n) Y { Y )y} we may define the empirical quantile function,

 (2.2) QY (u) = F '(u) = inf { y IF(y) i u}.

 Equivalently, the empirical quantile function may be defined in terms of solu-

 tions to a simple optimization problem. Explicitly,

 (2.3) QY(u)=inf(Yt Pu(Yi-y)=min!}

 where p is the "check function,"

 (2.4) PU(z) = ulzl f z O

 (1- u)jzj for z<O0.

 The latter definition suggests a natural analogue of the empirical quantile

 function for the linear model.

 Consider the random variable Y having conditional distribution function

 F(y I x) depending upon a row vector of exogenous variables x. We will assume

 henceforth that the first component of x is an intercept so that xiI = 1 for all i.

 Suppose that the conditional quantile function of Y,

 (2.5) Qy(uIx)=inf{yIF(yIx)? u}

 is a linear function of x, that is,

 K

 (2.6) Qy(u I x)= E Xkk(U) = Xfl(U)

 k= 1

 for some vector of constants /l(u) depending upon u. Now by analogy with (2.3)

 we are led to define an empirical conditional quantile function, for the sample

 Y1,*, Yn,

 (2.7) Qy(uIx) = inf{xI(u)I Pu(Y1-xfi(u)) = min!}

 In Koenker and Bassett [17] we have studied in some detail the behavior of the

 statistics /l(u) which we call "regression quantiles." 1 regression is an important
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 TESTS FOR HETEROSCEDASTICITY 45

 (median) special case with u = 1/2 (see Bassett and Koenker [4]). In previous

 work we have emphasized linear models with independent and identically

 distributed errors. Then the conditional quantile function may be written as

 (2.8) QY(u I x) = xf, + Q'(u)

 where /3 is some fixed vector of parameters and Qj(u) is the quantile function of

 the error distribution. In this case,

 (2.9) /(u) =I3 + ( Q(u),0, . . *, 0)'.

 The exogenous variables influence only the location of the conditional distribu-

 tion F(y I x). Note that due to the intercept we are free to choose the first

 element of /3 so that Qj( I ) = 0. In the iid case, the conditional quantile functions

 constitute a family of parallel hyperplanes.

 Departing from the assumption of identically distributed errors, we consider

 the following rather general model of systematic heteroscedasticity,

 (2.10) Y = it(x) + G(x)e

 where lt(x) may be thought of as the conditional mean of the regression process,

 a (x) as the conditional scale, and e as an error term independent of x from a

 distribution with quantile function Qj(u). The conditional quantile functions of Y

 are then simply,

 (2.11) Qy(u I x) = (X) + a((X) Q (u).

 We will assume that both It and a are linear functions of x, and we will write

 (2.11) as

 (2.12) Qy(u I x) = x:3 + (1 + xy) QJ(u)

 for some (/3, y) E R2K. We are free, of course, to set some elements of ,B and/or Y

 to zero a priori so the fact that It and a depend upon the same vector of

 exogenous variables reflects only notational convenience.

 This linear scale model of heteroscedasticity (2.12) is an important special case

 of the general class of models with linear conditional quantile functions. It

 subsumes many models of systematic heteroscedasticity which have appeared in

 the econometrics literature. The iid error case is simply y = Ie = a(1,0, . . . , 0)'

 for a 0. The model of Goldfeld and Quandt [14] with a(x) = GXk makes

 y = aek. Anscombe's [1] model in which scale is linearly related to. the mean of

 the regression process is also a special case with y = ce, + X,8. The so-called

 multiplicative heteroscedasticity model recently studied by Harvey [16] and

 Godfrey [13] which sets

 (2.13) a(x) = exp(xy)

 can be approximated for small 11yjj by the linear expansion

 (2.14) a(x) = 1 + xy + o(llY11)

This content downloaded from 131.193.211.30 on Thu, 24 Mar 2016 15:29:38 UTC
All use subject to http://about.jstor.org/terms



 46 R. KOENKER AND G. BASSETT JR.

 which takes the form (2.12). We will see presently that calculations of asymptotic

 power restrict us to local alternative models in which we consider sequences of

 alternatives {f -y} such that I = 0(1 /In). For such sequences the multiplica-

 tive heteroscedasticity model is well approximated by our linear scale model.

 This is also true of the model recently suggested by Breusch and Pagan [10] of

 which (2.13) is a special case. Bickel [6] treats the Anscombe model in this way,

 suggesting robustified versions of Anscombe's tests. Very much in the spirit of

 Bickel's work, the present paper proposes an alternative approach to robustified

 tests for heteroscedasticity.

 In the next section we sketch the asymptotic theory of "regression quantile"

 statistics under slightly weaker conditions than we have employed in previous

 work. This theory leads directly to new tests for heteroscedasticity in linear

 models.

 3. THE ASYMPTOTIC THEORY OF REGRESSION QUANTILES

 The asymptotic theory of regression quantiles in linear models with indepen-

 dent and identically distributed errors is treated in Koenker and Bassett [17] and

 with somewhat different methods in Ruppert and Carroll [25]. In this section we

 weaken the iid assumption slightly to consider the asymptotic behavior of

 JH( l/(u) - /l(u)) under a particular form of asymptotically vanishing heterosce-

 dasticity. We adopt the linear scale model (2.12), but rather than a fixed vector Y

 determining the scale parameter, we consider a sequence, {f -y}, depending on

 sample size. We make the following additional assumptions:

 ASSUMPTION Al (Density): The error distribution, F, has continuous and

 strictly positive density, f, for all z such that 0 < F(z) < 1.

 ASSUMPTION A2 (Design): The sequence of design points { xi}, satisfies

 n - -*xix' - D, a positive definite matrix.

 ASSUMPTION A3 (Scale): The sequence of scaling functions takes the form

 ao(x) = 1 + xyn, where y,n = -yjJn, for some fixed y0 E RK.

 Let D = (/l(ul), . . ., fl(um)) and D = ( /(ui)) with /l(u) as defined in (2.9), and

 let Q(u) = ( uQ(u1) .. ., Qe(um)). We may now state our main result.

 THEOREM 3.1: Under Assumptions A1-A3, nH (' - ) converges in distribution

 to an MK-variate Gaussian vector with mean vector Q(u) 0 yo and covariance

 matrix Q(u, F) 0 D - where 2 has typical element ,j = [min(ui, u;) - uiu;]

 If( Qe(u,)) f( Qe(u;)).

 PROOF: We adopt the approach and notation of Ruppert and Carroll [25]. Let

 (3.1) Vn(A) = Xi-(a(xi)ei x-x/AI - Q6(u))
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 TESTS FOR HETEROSCEDASTICITY 47

 where

 ~u (Z) U as z ?'0,

 A"Z ={u as z < 0.

 Set A = (/(u) - 8(u)). Clearly, V,,(A) = o&(1); this is simply a statement that a

 particular element of the subgradient of the defining minimization problem is

 o&(Vn ) when evaluated at elements of a solution sequence. Now define,

 (3.2) Un (A) = Vn (A) - Vn (0)-E ( Vn (A) - Vn (0)).

 From Ruppert and Carroll [25] and Bickel [6] we have for any L > 0

 (3.3) sup || Un(A)It = Op(l)

 O_`JAJJ<L

 and for any e > 0, there exists 71, L, and nO such that

 (3.4) Pr{ inf IVn(A) < 7}<e forn > no.

 By (3.4) and VnQ(A) = op(1) we have A = Op(l) so Un(A)= o&(1) follows from

 (3.3). Thus,

 (3.5) Vn(0) + E( Vn(A) - Vn(?)) = Op(l).

 Now,

 Vn(A) = ? u (I + xiyol )ei- xiAIF Q_(u)

 so for n sufficiently large we may write

 (3.6) Vn (A) = Z x14Pu(e-h, (jj,2i))

 where

 h(PI,v2) = (QE(u) + VI)/(l + V2)

 so

 (3.7) EVn(A) = - xj[(u-l)F(hj)+ u(l-F(hj))].

 Expanding F(hQ) to two terms we have

 (3.8) F(h(v1j, P2i)) = U + f( Qe(U))xi(A-Qj)Yo);

 thus,

 (3.9) EVn(A) = -f Qe(u)) n Xi ]( -Qe(u))Yo) + op (1).
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 48 R. KOENKER AND G. BASSETT JR.

 The term in square brackets converges to D, so

 (3.10) E( Vn(A) - Vn(0)) -f( Qe (u))DA

 and thus (3.5) implies the following asymptotic linearity result:

 (3.11) n( / (u) - : (u)) = if(QE(.)<ID 1uI

 n

 X Xi-U(G(Xi)ei Qe(U)) + o&(l).

 i= 1

 The design hypothesis (A2) implies maxIkI = o(Vn) so Vn (/(u1)-

 /U(uO), ... ., 8(um) - /3(uM)) satisfies the standard multivariate Lindeberg condi-

 tion and therefore is asymptotically Gaussian. The expectation of the right hand

 side of (3.11) converges to QE(u)'yo using (3.9) and the covariance matrix follows

 from routine but somewhat tedious calculations. See, for example, the proof of

 Corollary 1 in Ruppert and Carroll [25]. Q.E.D.

 Under iid conditions Theorem 3.1 reduces to Theorem 3.1 of Koenker and

 Bassett [17]. Conditional quantile functions are parallel hyperplanes in K space.

 And the slope coefficients of all regression quantiles converge in probability to

 the same vector. When the errors are not identically distributed the situation is

 quite different. In the linear scale model of heteroscedasticity described above,

 /3(u) converges in probability to /l(u) + Q,(u) y0, so slope coefficients depend in

 a nontrivial way on u. A convenient aspect of making yn = 0(11/JH) is that the

 limiting covariance structure of /8(u) is independent of y. This is essential for the

 hypothesis testing discussion to follow, but by no means necessary for consis-

 tency results for example. Consistency obtains as long as Qy(u I x) is strictly

 linear in x as for example in (2.12).

 In Koenker and Bassett [17] we emphasized that robust estimators of the

 parameters of iid linear models can be constructed from linear combinations of a

 few regression quantile estimates.3 In addition, analogues of trimmed means were

 suggested for iid linear models based on regression quantiles. These "trimmed-

 least-squares estimators" have been studied intensively by Ruppert and Carroll

 [25]. Methods of estimation and tests of hypotheses based on regression quantiles

 in linear models with iid errors can substantially improve upon traditional

 least-squares methods in non-Gaussian situations. This is especially true when

 error distributions are longer-tailed than the Gaussian distribution. But all of this

 3Robert Hogg has recently suggested to us (personal communication) that rather than forming

 estimates from linear combinations of regression quantiles, one might form linear combinations of

 several regression quantile objective functions and then minimize, effectively constraining the slope

 estimates of several regression quantile solutions to be identical. This suggestion yields estimators

 with similar, but not identical, asymptotic behavior to those we originally suggested. We hope to

 report in greater detail on such estimators in future work.
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 earlier work relies heavily on the iid-errors assumption which implies that

 Qy(u I x) depends upon x only in location. In many applications it may be

 plausible that exogenous variables influence the scale, tail behavior, or other

 characteristics of the conditional distribution of Y. It is to tests of one such

 hypothesis that we now turn.

 4. TESTS FOR HETEROSCEDASTICITY

 Theorem 3.1 of the preceding section provides a foundation for tests of

 hypotheses. Having estimated the parameters of several conditional quantile

 functions and noted discrepancies among the estimated slope parameters, the

 question naturally arises: "Are these discrepancies 'significant'?" Tests with

 asymptotic validity may be readily constructed. No parametric assumptions on

 the shape of the error distribution are required. This nonparametric feature of the

 tests stands in marked contrast to the dominant approach found in the literature

 which rests, shakily in our view, on the hypothesis of Gaussianity. As Bickel [6]

 and others have recently pointed out, tests based on least squares residuals from

 a preliminary fit of the model are highly sensitive to Gaussian assumptions.

 Slight perturbations from Gaussianity can wreak havoc with the behavior of

 least-squares based test statistics. We will illustrate this phenomenon in Section

 4.2.

 4.1 A Test Statistic

 Now consider the general linear hypothesis

 (4.1) Ho : Ht = h.

 Under the conditions of Theorem 3.1 we have the following result.

 THEOREM 4.1: Under the null hypothesis Ho, the test statistic,

 (4.2) T = n (Ht -h)'[ H(Q 0 D - ')H'] (H -h)

 is asymptotically non-central chi-square with rank (H) degrees of freedom and

 noncentrality

 (4.3) q = (H( Q,(u)0 yo))'[H( 20 D 1)H'] (H( Q,(u) (9 yo)).

 In the homoscedastic case the slope parameters are identical at every quantile.

 So partitioning ,B = (/3k, 82)Y and X = [1: X2], set h = 0, and

 (4.4) HA = A 0 D

 where A is an (m -1) x m matrix with typical element Aij = Sy - i(j-1) ij is
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 50 R. KOENKER AND G. BASSETT JR.

 the Kronecker delta, and = [0 Ikk-l]. Thus, for example, when m =2, A

 = [1, -1] and when m = 3

 (4*5) ()0 1 I , (

 Then H = [At (]D= (f 32(u 1) -2(U2), * * AUM- 1)- PAUMA

 (4.6) H(Q 0 D - ')H' = A\QA'O 0 D - 10%

 and

 (4.7) '1 = (qA ? 7y0)'[AQA' 0 D 1-'] (qA0 J -y)

 = q(A2A')- lqA * (7yO)'(QD 1V)4 (Y?

 where qA = ( uQ(u1) -QE(U2), ... I QJ(UM- 1) -Qe(uM)). Thus, in the homosce-

 dastic case, yo = 0, T is asymptotically central x2 with (M - 1)(K - 1) degrees of

 freedom. The power of the test depends as expected on the design, yo, qA, and,

 via Q, on the density of e valuated at chosen quantiles. In practice we replace

 D' with n(X'X)f-, so

 (4.8) n[4'D - 'V]= (X2X2-n5252)-

 We must also replace Q with a consistent estimate U. This problem is addressed

 in Section 4.3.

 4.2 Asymptotic Relative Efficiency with Respect to a Least-Squares Test

 It is interesting at this point to compare the asymptotic behavior of the test

 suggested above with a test of Ho recently proposed by Breusch and Pagan [10].

 Their test is based on the vector of least-squares residuals,

 (4.9) u =[I - X(X'X)-1X']y.

 Let w = (au) 2= u'u/n, and

 (4.10) y= (X'X)-'X'W.

 Then Breusch and Pagan suggest a test of I'yo = 0 based on the test statistic

 (4.11) 2= QI(ya)'Q(X'X) - - 1/A4.

 They demonstrate that if e is a vector of independent and identically distributed

 Gaussian random variables then under the null hypothesis, Ho: y = O, ( will be

 asymptotically central X2kI.

 Strengthening Assumptions (Al) and (A2) slightly so that Ve2 < X and
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 maxyjlxyjl < so, one can easily show that

 (4. 1 2) (* = -/ XK- I (4QI?7o)'Q?D - I?D) - O ' / Ve2)

 where X 2 V= 2/a. When the error distribution F is Gaussian then ye= 2=4,

 so X = 1, and the asymptotic size of Breusch and Pagan's test based on ( is

 correct. However, deviations from Gaussianity, or more explicitly, deviations

 from Gaussian kurtosis imply X #4 1 and the significance levels suggested by

 Breusch and Pagan will then be incorrect asymptotically. This point is hardly

 new. It was made by Box [9] and has been recently reemphasized by Bickel [6] in

 the context of Anscombe's model of heteroscedasticity. The obvious solution to

 the size problem is to "Studentize" the quadratic form suggested by Breusch and

 Pagan by an estimate of V,2, say n - `Z(2i2 - &)2, instead of 2a4, as they suggest.

 Note that this approach is adopted by White [30] in proposing a similar test for

 heteroscedasticity based on least squares residuals.

 The local power of our test, (, and the appropriately Studentized test, (*, may

 be compared by computing Pitman's asymptotic relative efficiency (ARE) of the

 two tests. For any two tests of the same hypothesis, the same size, and same

 power with respect to the same alternative: if the first test requires n1 observa-

 tions and the second requires n2 observations, then the relative efficiency of the

 second test with respect to the first is nI / n2. The limit of this ratio as both

 numerator and denominator tend to infinity is the asymptotic relative efficiency

 of the two tests. See Pitman [22] or Rao [24] for additional details.

 In an effort to obtain some quantitative feel for plausible ARE's in applica-

 tions we have calculated some for members of the family of contaminated

 Gaussian distributions. This family is often suggested as affording plausible

 longer-tailed alternatives to strictly Gaussian errors, see Tukey [26]. In its

 simplest form, the family is indexed by two parameters: g, the proportion of

 contamination, and 4, the scale of the contaminating Gaussian distribution, i.e.,

 (4.13) F7,,(x) = (1 - 7)G0,1(x) + gGo +(x)

 where G0, denotes the Gaussian distribution function with mean 0 and scale f.

 To facilitate the comparison we use the simplest possible version of ( based on

 only two symmetrically placed quantiles. We assume, of course, that a consistent

 estimate of 02 is available. See the next section for a discussion of how such

 estimates may be constructed. Thus in the notation of the previous sections

 u = [p, 1 -p], A = [1, -1] and h = 0. We will denote by 4p the test based on the

 pth and (1 - p)th quantiles. Since both (p and (* are asymptotically x2 with the

 same degrees of freedom, K - 1, their ARE is simply the ratio of the noncentral-

 ity parameters of their limiting distributions, which in our case yields

 (4.14) ARE = 7ip7* = q2(p)Ve2/4(AQA').
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 52 R. KOENKER AND G. BASSETT JR.

 A few contours of asymptotic relative efficiency of the two tests are illustrated

 in Figures 1 and 2 for p =.25 and p =.05. The striking feature of the figures is the

 rapid deterioration of the least-squares test as modest amounts of contamination

 are introduced. For a fixed proportion of contamination the asymptotic relative

 efficiency of (* to ((p) goes to zero as 4 the relative scale of the contaminating

 distribution increases without bound. The test based on ( 25(( 05) needs about 2.72

 (1.56) the number of observations needed by t* at the strictly Gaussian case, but

 with 10 per cent contamination from a Gaussian distribution with relative scale

 of three, the asymptotic efficiency comparison is dramatically reversed. The

 least-squares test (* now requires more than three times the number of observa-

 tions needed by either ( 25 or O5 'When there is 20 percent contamination from a

 distribution with relative scale of five, (* needs 40 times the number of observa-

 tions that .25 needs to achieve the same asymptotic power. It should be noted

 that p = .25 is quite pessimistic, in the sense that smaller p's can rather dramati-

 cally improve the efficiency of the (P test near the strictly Gaussian case. This is

 evident in the figures, and may suggest that small values of p, say .05-.10, may

 be desirable unless severe contamination is expected.

 Expanding the test statistic 4P to include additional quantiles has a mixed

 payoff. The noncentrality parameter of the limiting x2 cannot decrease and may

 increase which would increase the power of the test. But degrees of freedom also

 5

 4

 w

 -J

 w

 22

 2.0

 _.272 I , I

 0 0.1 0.2 0.3 0.4 0.5

 % CONTAMINATION

 FIGURE 1 -Asymptotic relative efficiency contours p = .25.
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 FIGURE 2 -Asymptotic relative efficiency contours p =.05.

 increase, decreasing power, and counterbalancing the noncentrality effect. An-

 other possibility (which we have not explored) would be to compute weighted

 averages of several upper and lower quantiles and then test for equality the

 weighted averages. This would capture the noncentrality effect to some extent

 without sacrificing the degrees of freedom effect.

 4.3 Estimating Q

 Tests of hypotheses based upon regression quantile statistics typically require

 the estimation of certain nuisance parameters of the matrix U. In the case of the

 heteroscedasticity test proposed above the reciprocals of the density function of

 errors evaluated at each of the quartiles are required. The reciprocal of a density

 is the derivative of a quantile function. Tukey [27] has aptly called such functions

 "sparsity functions." See also Bloch and Gastwirth [7].

 In the one-sample (location) model the problem of estimating elements of Q is

 essentially a problem of smoothing the empirical quantile function. For an

 important recent discussion of such problems, see Parzen [20]. In the linear

 model setting a natural approach would be to replace F or Q based on a single

 sample with an F or Q based on residuals from a preliminary fit of the model.
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 54 R. KOENKER AND G. BASSETT JR.

 Recent work by Ruppert and Carroll [25], Loynes [181, and Pierce and Kopecky

 [23] provide asymptotic support for such an approach.

 However, here we adopt an alternative approach. In (2.7) we defined an

 empirical conditional quantile function Qy(u I x) at an arbitrary design point x.

 We have studied these functions in some detail in Bassett and Koenker [5]. We

 restate two important results here without proof.

 THEOREM 4.2: The sample paths of Ay(u 5x) are non-decreasing, left-continuous,

 jump functions of u.

 THEOREM 4.3: In linear models with independent and identically distributed

 errors satisfying Assumptions Al-A2 the random function of u, Vn[ QY(u I x) -

 Qy(u I x-)], has finite dimensional distributions which are asymptotically Gaussian

 with mean vector zero and covariance matrix U.

 The first result assures that Qy(u 1 5) looks, at least superficially, like an

 empirical quantile function, i.e., a monotone staircase. However, it is important

 to note that unlike the one-sample case the steps are not of equal width on the

 u-axis, but depend upon the design configuration as well as the realization of Y.

 We also should note that Qy(u I x) is not necessarily monotone in u for x x

 The second result establishes that not only is Qy(u I x~) a weakly consistent

 estimator of Qy(u I x), but the normalized process n/( Q - Q) behaves in large

 samples as if it arose from the location model and is asymptotically independent

 of design. Thus consistent estimates of the sparsity function may be easily

 constructed from Q.

 A

 Let R(u) denote the minimum value achieved by the objective function at each

 regression quantile, i.e.,

 (4.15) R(u) = min p E (yi - xib)1.

 In Bassett and Koenker [5] we show that Qy(u I x) is simply a translated version

 of the left derivative of R(u) with respect to u,

 (4.16) Qy(u I x) = y - R'(u - 0)

 where y = n I yi. The computation of R(u) may at first appear prohibitive

 since it requires the solution of an entire one-dimensional family of linear

 programs indexed by u E (0, 1). However, the parametric programming problem -

 posed in Koenker and Bassett [171 is readily solved for R(-). Even more efficient

 methods are undoubtedly possible using the techniques developed by Barrodale

 and Roberts [2] for 1, estimation. See the Appendix of Bassett and Koenker [51

 for further details on computation. The computation of R(u) for the examples

 discussed in Section 5 was carried out by the IBM-MPSX linear programming
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 package, and checked with an adaptation of the Bartels and Conn [3] 1,

 regression algorithm.

 Let R(u) denote a smoothed version of R(u); then estimates of the sparsity

 function of errors are immediately available by differentiating twice:

 (4.17) s (u) = R "(u).

 In our examples below we have chosen to use a variant of the histospline

 methods of Boneva, Kendall, and Stefanov [8], and Wahba [28]. The smoothed

 estimates R(u) are cubic splines-piecewise cubic polynomials. The smoothness

 of R is governed by the number of knots chosen at abscissa points. At knots the

 third derivative of the spline has a jump discontinuity. In the examples reported

 in the next section knots were equally spaced on (0, 1) with "natural" end

 conditions. Computation of the smoothing splines and their derivatives was

 carried out with the aid of B-spline routines in the PORT Library described in

 Fox [12].

 There is an element of inevitable arbitrariness in any smoothing or derivative

 estimation technique since many quite different techniques all yield consistent

 estimates. The obvious element here is the choice of the degree of smoothness

 governed by the knot selection. While several formal methods of choosing a

 degree of smoothing exist, notably the cross-validation methods of Wahba [29],

 we have chosen in the examples below to compare results for several different

 degrees of smoothness.

 5. SOME EXAMPLES

 We now illustrate the methods introduced above with several examples. We

 begin with a particularly simple form of design. The next two empirical examples

 are simple bivariate models which lend themselves to visual analysis.

 5.1 Two Sample Problems

 We have already noted that in the one-sample (location) model our methods

 specialize to consideration of the ordinary sample quantiles. In the two sample

 problem, y = (YII Y2)" with design

 it is readily shown that any uth regression quantile estimate, /3(u) = 0(u),

 B82(u)), has the property that 8,/(u) is a uth sample quantile from sample 1

 consisting of the first n1 observations and #2(u) is a uth sample quantile from

 sample 2 consisting of the last n2 observations. Thus, denoting the empirical

 quantile functions of the two samples by Qi(u) we have for the two sample
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 problem,

 (5.2) /3(U) = (Q1(u), Q2(u)).

 The conditional empirical quantile function for the two sample problems is thus

 simply a weighted average of the two one-sample empirical quantile functions. In

 particular, we have

 (53 AQ( n A n2A

 (5*3) QY(u Q1(u) + -)) Q2(U).

 It proves convenient to transform the design to accommodate an intercept,

 (5.4) X = XA4 =0 l ][ -

 By the equivariance result (Theorem 3.2(iv)) of Koenker and Bassett [17] our

 estimates for the transformed model are simply

 (5.5) f(u)=A Af(u) ( A - Q(u))

 If we now consider tests for departures from homoscedasticity like those sug-

 gested above, we see that they reduce to tests of hypotheses of the form,

 (5.6) (Q2(u1) - QI(u)) - ( Q2(u2) - QI(u2)) = 0.

 5.2 Engel's Food Expenditure Data

 In this subsection we investigate the data originally presented by Ernst Engel

 [11] to support the proposition that food expenditure constitutes a declining share

 of personal income. The data consists of 235 budget surveys of 19th century

 European working class households. An interesting discussion of the data sources

 and Engel's analysis of the data may be found in Perthel [21]. Following

 established custom we transform the data on annual household income and food

 expenditure to natural logarithms. In Figure 3 we present the scatter of original

 data on double log axes. Fitted regression quartile lines have been superimposed

 on the same figure. The fitted quartile lines suggest a weak increasing conditional

 scale effect. The estimated slope parameters (Engel elasticities) for the three

 quartiles are .85, .88, .92 respectively. To test the "significance" of this effect we

 begin by estimating the reciprocal of the error density at the quartiles.

 Our method is described in Section 4.2. The estimate R(u) was computed, and

 several smoothed histopline estimates R(u) were made. The degree of smoothness

 of R(u) is governed by the number of knots: estimates with 5, 10, and 15

 equally-spaced interior knots in (0, 1) were computed. Our sparsity function
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 TABLE I

 SPARSITY ESTIMATES AND X2 TESTS FOR HETEROSCEDASTICITY

 Smoothness knots i(1/4) 9(1/2) s(3/4) T

 smooth 5 .5446 .3754 .3087 4.42

 moderate 10 .5586 .3046 .3009 5.00

 rough 15 .6256 .3154 .3139 4.41

 estimates s&(u) are second derivatives of R(u). They are linear splines, i.e.,

 continuous, piecewise linear functions. The three resulting estimates are illus-

 trated in Figure 4. Sparsity estimates at the quartiles for the three degrees of

 smoothness are given in Table I.

 We illustrate the calculations of the test statistic for the case of moderate

 smoothing with 10 knots. The estimates of the sparsity function at the quartiles

 are

 (S ( I) S( I ), 5( 4()) = (.5586, .3046, .3009)

 so we have

 A .0585 .0213 .0105

 Q .0213 .0232 .0115 .

 L.0105 .0115 .0170]

 With A as in (4.5) we have

 [(XfX - n5X2 )-, f / -l[1168.50 65.451

 - n~2'A~A' = L65.45 2629.00]

 So with

 ( AlA/~

 A Pi2(4)P22j) 0 _ -.027\

 :2( 1) - #2( 34 ) -.039)

 we have t'l -'= 5.0. In Table I we present sparsity estimates and test statistics

 for varying degrees of smoothness. A x2 variable on 2 degrees of freedom

 exceeds 6.0 with probability .05 so the null hypothesis of homoscedasticity

 cannot be rejected on the basis of the tests reported in Table I.

 5.3 Demand for Admen

 In this subsection we investigate a simple model of labor demand by advertis-

 ing agencies. In Figure 5 we have plotted data on the number of employees and

 annual U.S. billings in 1967 of 108 of the largest American advertising firms. The

 data is taken from Advertising Age. As in the previous example we have

 superimposed the three regression quartile lines on the raw data. The quartiles

 have slopes of 6.25, 6.67, 7.20 employees per million dollars of annual billing in

 1967 dollars. It is interesting to note in this example that the least squares
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 regression line with B2 = 6.4 persons/million dollars looks roughly like the first

 quartile fit due to the strong influence of the anomalous behavior of McCann-

 Erickson Inc. which is circled in the figure and has roughly half as many

 employees as one would predict from the remaining data. Again we have a

 conical configuration of quantile lines possibly reflecting an increasing condi-

 tional scale effect.

 Again we have estimated several smoothed estimates R(u) for this example.

 Proceeding as in the previous example using the moderate smoothing estimate

 (with 10 equally spaced knots) we obtain a test statistic of 46.4 for equality of

 slopes of the quartile models. The smoother estimate with only 5 knots yields a

 test statistic of 83.9. Since a x2 variable on 2 degrees of freedom exceeds 9.2 with

 only 1 per cent probability, the hypothesis of homoscedasticity is firmly rejected.

 Dispersion in labor demand measured by interquartile distances significantly

 increases with scale. Note that this inference is extremely robust with respect to

 the position of the anomalous McCann-Erickson point. Moving McCann-

 Erickson up as far as the first quartile line or down exerts no effect on the

 quartile estimates presented above (see Theorem 3.4 of Koenker and Bassett

 [17]), but such movements would exert a strong effect on least-squares estimates

 and an even stronger effect on tests for heteroscedasticity based on least-squares

 residuals like those of Goldfeld-Quandt [15] and Breusch-Pagan [10].
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 6. CONCLUSION

 We have proposed a method for estimating linear models for conditional

 quantile functions. The method makes no parametric assumptions on the shape

 of the error distribution, and employs the "regression quantile" statistics previ-

 ously introduced in Koenker and Bassett [17]. Tests for heteroscedasticity are

 proposed based on the large sample theory of the proposed estimators. We

 believe these methods should prove to be useful diagnostic tools in a wide range

 of linear model applications.

 Bell Laboratories

 and

 University of Illinois-Chicago Circle

 Mantuscript received September, 1979; revision received February, 1981.
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