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 Econometric Theory, 2, 1986, 191-201. Printed in the United States of America.

 STRONG CONSISTENCY OF

 REGRESSION QUANTILES AND

 RELATED EMPIRICAL PROCESSES

 GILBERT W. BASSETT

 University of Illinois at Chicago

 ROGER W. KOENKER

 University of Illinois at Champaign-Urbana

 The strong consistency of regression quantile statistics (Koenker and Bassett

 [4]) in linear models with iid errors is established. Mild regularity conditions

 on the regression design sequence and the error distribution are required.

 Strong consistency of the associated empirical quantile process (introduced in

 Bassett and Koenker [1]) is also established under analogous conditions.

 However, for the proposed estimate of the conditional distribution function

 of Y, no regularity conditions on the error distribution are required for uniform

 strong convergence, thus establishing a Glivenko-Cantelli-type theorem for this

 estimator.

 1. INTRODUCTION

 In several recent papers, Koenker and Bassett [1, 5] and Bassett and Koenker

 [1], we have explored the problem of estimating linear models for condi-

 tional quantile functions of related random variables. This approach com-

 plements classical least-squares methods for linear models as well as recent

 robust methods which focus exclusively on estimation of conditional central

 tendency.

 The authors wish to express their appreciation to the editor and readers for an extremely careful

 and constructive review. The support of the NSF through grant SES-8408567 is also gratefully

 acknowledged.
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 192 GILBERT W. BASSETT AND ROGER W. KOENKER

 We will consider the linear model

 Yi=x,f3+ui i= 1,2,...,n (1.1)

 where x, e RP is a nonstochastic row vector, and / is an unknown p-

 dimensional parameter. The initial element of xi will be taken to be 1 for

 all i, so the first element of , may be interpreted as an intercept parameter.

 Given an observed sample yi, . . Y, Yn, we let B(O) denote the set of solutions

 to the problem

 n

 min po(yi - xib) (1.2)

 bc-RP i= I

 where 0 E [0, 1] and po( ) is the "check function",

 po(U) = {O- 1)u > 0 (1.3)

 Elements of B(0) are denoted by ,B. In Koenker and Bassett [4] we showed

 that with {uiJ iid F, the sequence of solutions {,B} had the property that,

 under mild conditions on the sequence of designs and the assumption that

 F had a positive density in a neighborhood of the Oth quantile, Q(O) = F- '(0),

 +/n(/36 - - ) converged in law to a p-variate Gaussian distribution with

 mean vector 0, H = (Q(O),O, ... , 0)' E RP. Thus, under the foregoing condi-

 tions #O is weakly consistent for fO = /B + 40. In Koenker and Bassett [5]

 we showed that similar asymptotic behavior prevailed in sequences of linear

 models with heteroscedasticity of order 0(1/X/n). In this paper we maintain

 the hypothesis of iid errors while relaxing our previous smoothness conditions

 on the error distribution F. We begin by treating the behavior of the p-

 dimensional regression quantiles and conclude by treating the associated

 empirical processes introduced in Bassett and Koenker [1].

 The estimate of the conditional quantile function of Y we propose is

 Qy(0 I x) = inf {xb l b e B(0)}. (1.4)

 It was previously shown that at x = x = n - lixi, the sample paths of the

 random function

 QY(0) -QY(O I -x) (1.5)

 are non-decreasing, left continuous jump functions on (0, 1). However, unlike

 the ordinary empirical quantile function to which Qy(O) specializes when

 Xn= in, an n-vector of ones, Qy(0) jumps at irregularly spaced points on

This content downloaded from 131.193.211.30 on Thu, 24 Mar 2016 01:36:24 UTC
All use subject to http://about.jstor.org/terms



 STRONG CONSISTENCY OF REGRESSION QUANTILES 193

 (0, 1). Similarly, one may show that

 QY(O + 0) lim QY(O + c) (1.6)

 E | O

 sup {x-b lb E B(0)}

 is a nondecreasing, right-continuous jump function on (0, 1). It was also

 shown that properly normalized versions of these processes have finite dimen-

 sional distributions which converge to those of the Brownian Bridge process.

 This estimate of the quantile function may be "inverted" to obtain an empir-

 ical distribution function for the linear model

 Fy(y) = sup {0IQy(O) < y} (1.7)

 Portnoy [7] has recently shown that this estimator converges weakly to the

 Brownian Bridge process.

 Almost sure convergence results are established below under mild regularity

 conditions on the design and the distribution function of the errors for Qy(O).

 In the case of our proposed estimate of the error distribution Fy(y), no

 regularity conditions are required on F, thus providing a natural extension

 of the Glivenko-Cantelli theorem to the realm of linear models. The latter

 result provides an intriguing alternative to methods based on residuals for

 assessing distributional features of linear models with iid errors.

 It has been long recognized that least squares residuals provide a rather

 unsatisfactory basis for assessing departures from the Gaussian error hy-

 pothesis in linear models. See, for example, the comments by Weisberg [9].

 It is well known that the empirical distribution function of least-squares

 residuals is biased toward the Gaussian shape. Similar bias may be demon-

 strated for residuals based on other preliminary estimates, see Bassett and

 Koenker [1], and the references cited there. Thus it is of obvious interest to

 investigate methods for estimating the shape of the error distribution which

 do not rely on an empirical process based upon residuals. Our proposed

 methods offer a natural generalization of unidimensional empirical process

 to the linear regression model while avoiding some of the problems inherent

 in choosing a preliminary estimator from which to compute residuals.

 2. STRONG CONSISTENCY OF REGRESSION QUANTILES

 We will assume throughout that we have data generated from the model,

 Yi = xi: + ui, (2.1)

 The errors ui are assumed to be independently and identically distributed

 with distribution function F. About F we will assume that it is a proper,
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 194 GILBERT W. BASSETT AND ROGER W. KOENKER

 right-continuous distribution function. Its "inverse" will be denoted by

 Q(0) = inf {u I F(u) ) 0} (2.2)

 so Q is left continuous on [0, 1]. The parameter fl is an unknown p-vector.

 The sequence {xi} of design vectors is assumed to "contain an intercept,"

 that is, xi1 = 1 for all i and to satisfy, the following regularity conditions:

 dn= inf n' Z Ixico_ w d > O n>no (D1)

 IIo1= 1 i=1

 n

 D = sup n- (x)2 < D < oo n>no (D2)

 n Iol i X1

 (DI) is essentially an identifiability condition while (D2) bounds the rate of

 growth of design rows facilitating certain uniform continuity arguments.

 We may now state:

 THEOREM 2.1. If (Dl) and (D2) hold and F has a unique 0th quantile, that

 is, Q(O) = Q(0 + 0), then any sequence of solutions {Bfn(0)} to problem (1.2)

 satisfies f3n(0) ,B /3 - , almost surely.

 Proof. Consider,

 n

 Rj(b) nl ri(b)

 i = 1

 n

 n n-, [po(u, - - Q(O)) - po(u - Q(0))] (2.3)

 Since Rn(0) = 0, Rn(6) < 0 on its minimum set. And Rn(b) is a sum of convex

 functions and therefore convex, and convexity assures that RV(6) is strictly

 positive outside the A-ball, if for any A > 0,

 lim inf inf R"(6) > 0 (2.4)

 n-cx 1111=A

 Thus it suffices to show that (2.4) holds almost surely.

 We begin by establishing that at each 6,

 Rd)- E(Rn(b)) -+ 0 a.s. (2.5)

 Since |ri(b)t < jxibl, we have,

 E Var (ri(b))/i2 < E (xib)2/i2 (2.6)

 i = 1
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 STRONG CONSISTENCY OF REGRESSION QUANTILES 195

 and using (D2),

 <, 11615l14D2j(Xi6)2/(j(Xi6)2)2

 which is convergent (see Hardy, Littlewood, and Polya [3, p. 120]) so

 Kolmogorov's criterion is satisfied and (2.5) follows. This may be strength-

 ened to uniform convergence on compacts by noting that for any 30 E RP, we

 have, for n > no,

 sup {jR(b) - Rj(o)j} < sup {n-'Ixj(6 - 6o)1}

 i sup n-lixict|

 D 1112

 Dnl

 r, D1/ (2.7)

 Thus to establish (2.4) it remains to show that ERP(3) is bounded away from

 0, for any 11k11 > 0. For a > 0, let

 g(x) = E[po(u - - Q(O)) - Po(U - Q(O)]

 = a - O)c dF(u)- f xcOdF(u) - (u - Q)dF(u) (2.8)

 and integrating by parts gives,

 g(o) = J+ (F(u) - ) du. (2.9)

 For a < 0, the sign and limits of integration are simply reversed. The function

 g is convex, g(oa) > 0, and g(a) = 0 only for 0 < a < Q(O + 0) - Q(O). Thus,

 when 0 is unique g(oc) = 0 only at 0. Now, let h(x) denote the convex hull

 of g(o) and g(- x), that is, let h be the greatest convex function such that

 h(cx) < g(o) and h(oa) < g(- xt) for all cx E R; see e.g., Rockefeller [8 p. 37]. Then

 we have,

 n

 ERP() >In-E h(x ib)

 i=1

 - n-'h(Ixjbj)

 h(n-1jjxj6j)

 > h(dllbll) (2.10)

 by the symmetry of h, Jensen's inequality and (DI) respectively. The function

 h(o) is positive for a # 0 by the uniqueness of the 0th quantile, thus com-

 pleting the proof. U
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 196 GILBERT W. BASSETT AND ROGER W. KOENKER

 Reviewing the preceding argument it is clear that uniqueness of the Oth

 quantile is needed only to argue that ERJ(6) has a unique minimum at the

 origin. When the Oth quantile is not unique then ERJ(J) has a larger min-

 imum set, but it is straightforward to show that solutions to (1.2) converge

 almost surely to elements of this set. (See Koenker and Bassett [6] for an

 example of weak but not strong convergence in this context.) We can there-

 fore establish a slightly more general form of the previous result.

 THEOREM 2.2. Let AJ(A) = eJ c RPIERn(6) ? A}, the A-level set of

 ERJ(4). If (D1)and(D2) hold and F is any proper, right-continuousfunction

 then any sequence oj solutions to (1.2), {/31n()}, satisfies

 A

 /l3(0) - /- e An(A) a.s. (2.11)

 for all A > 0.

 Proof. Let An(A) denote the boundary of An(A). By the convexity argu-

 ment of the preceding proof it suffices to show

 lim inf inf Rn(6) > 0 a.s. (2.12)

 n -t oo '6 An(A)

 This can be established by showing that An(A) is bounded, since we can

 then appeal to (D2), and use ERn(J) to approximate Rn(6) on the compact set

 AJ(A) as in the proof of Theorem 2.1.

 The sequence of steps in (2.10) remains valid here and implies

 An(^) C {J c RP Ih(11611d) <_ A} (2.13)

 and the larger set is bounded because (i.) d > 0, and (ii.) the convex function

 h is zero only on the bounded interval with the endpoints + [Q(O + 0) -

 Q(O)] and this completes the proof U

 To complete this section we consider the case in which F has positive mass

 at Q(O). Under this condition we can strengthen Theorem 2.1. The following

 result plays a crucial role in the next section on empirical processes.

 THEOREM 2.3. Fix 0 E (O, 1), and assume, ;(0) = F(Q(O))-F(Q(0)-0)> 0,

 so F has strictly positive mass at the Oth quantile. Then for any e > 0, there

 is an nO such that

 P{B,(0) = 1 ? ,9 n > nO} ) 1 - E. (2.14)
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 Proof. Consider the directional derivative

 R'(6, w) = n- 'Zr'(, w)

 - '[2- 0 - sgn*(ui - xj6, xiw)]xiw (2.15)

 where sgn*(u, v) = sgn(u) for u # 0 and sgn(v) otherwise. We must establish,

 lim inf inf R(O, w) > 0 a.s. (2.16)

 n - llwl = 1

 Following the approach used in the proof of Theorem 2.1 we begin by show-

 ing that for fixed w,

 RJ(O, w) - ER'(0, w) -+ 0 a.s. (2.17)

 Since Ir'(0, w)I < Ixjwl

 00 00

 EVar(r'(0, w))/i2 (XiW)2/i2 < 00 (2.18)

 i=l i=l

 by (D2). So Kolmogorov's criterion implies (2.18). This may be strengthened

 to uniform convergence on the sphere ||wil = 1 using (D2) and the continuity

 of R(0, w) in w, as in the argument following (2.6). Thus it remains to verify

 that ER'(0, w) is bounded away from zero.

 Now,

 Er=0 w [F(Q(0)) - 0]x1w if xjw '> 0 .9

 Er(0, w) [F(Q(0) - 0) - Q]xiw otherwise (2.19)

 so setting m(H) = min {F(Q(0)) - 0, 0 - F(Q(0) - 0)} we have,

 Er'(0, w) ) m(0)|xjw|, (2.20)

 hence, using (D1), and the fact that C(0) > 0,

 lim inf inf ER'(0, w) > m(O)d > 0, (2.21)

 n- o llwll = 1

 which completes the proof m

 3. STRONG CONVERGENCE OF EMPIRICAL PROCESSES

 BASED ON REGRESSION QUANTILES

 Here we wish to investigate the strong convergence of Qy(0) and Fy(0) using

 results from the previous section. We may begin by noting that given the iid
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 198 GILBERT W. BASSETT AND ROGER W. KOENKER

 error assumption of model (1.2), the 0th conditional quantile function of Y

 given x may be written as,

 QY(I x) = xf, + Q(O) (3.1)

 We will restrict attention as previously to

 QY(0) = QY(O = X := + Q(O). (3.2)

 We may now state:

 THEOREM 3.1. If (DI) and (D2) hold and Q(O) is continuous on a closed

 interval 0 c (0, 1) then

 sup IQyY(0) - Qy(O) 0 a.s. (3.3)

 Proof. From (2.1) we have pointwise convergence of Qy(O) and Qy(O + 0)

 to Qy(O) and using the monotonicity and continuity of Qy(O) this may be

 strengthened to uniform almost sure convergence on 0. See, for example,

 the argument in Billingsley [2, p. 233] for the Glivenko-Cantelli theorem

 .

 The standard argument for Glivenko-Cantelli also shows that the uniform,

 almost sure convergence of F follows from the pointwise convergence results:

 Fy(Qy(O)) - F(Qy(O)) -+ 0 a.s. (3.4)

 Fy(Qy(O) - 0) - F(Qy(O) - 0) -+ 0 a.s. (3.5)

 We will establish (3.4) and (3.5) without any smoothness conditions on F

 using two lemmas.

 LEMMA 3.1. If (D1) and (D2) hold then at each 0 E (0, 1),

 lim sup Fy(Qy(O)) < Fy(Qy(0)) a.s. (3.6)

 noo

 and

 lim inf Fy(Qy(0) - 0) > F(Qy(O) - 0) a.s. (3.7)

 no

 Proof. It suffices to establish the inequalities:

 lim inf Qy(O) > Qy(O) a.s. (3.8)

 n -oo

This content downloaded from 131.193.211.30 on Thu, 24 Mar 2016 01:36:24 UTC
All use subject to http://about.jstor.org/terms



 STRONG CONSISTENCY OF REGRESSION QUANTILES 199

 lim sup Qy(O + 0) < Qy(O + 0) a.s. (3.9)

 n oo

 From Theorem 2.2 we have for any A

 Qy(O) -> Qy(O) + inf{iV I | e- An(A)} a.s. (3.10)

 and

 Qy(0 + 0) < Qy(O) + sup {56 1 e c An(A)} a.s. (3.11)

 By Jensen's inequality, and using (D1),

 n

 {IX6 An(A)} = {x5 | n I g(xi) < A}

 i= 1

 c jjMjg(x5) < Al. (3.12)

 Since g( ) is convex and zero only on [0, Q(O + 0) - Q(O)], recall (2.9) above,

 we have

 lim inf{aIg(ax) < A} = 0 (3.13)

 Ajo

 and

 lim sup {a|g(oc) < A} = Q(O + 0)- Q(O)

 A40

 which imply the conclusion of the lemma A

 Remarks

 1. For continuous F, (3.6-7) implies

 lim inf Fy(Qy(O) - 0) = lim sup Fy(Qy(6)) = 0. (3.14)

 n - oo nn-,oo

 And by standard arguments for the Glivenko-Cantelli theorem, again see

 Billingsley [2, p. 233], this implies

 sup IFy(u) - Fy(u)j -* 0 a.s. (3.15)

 u e R

 2. Lemma 3.1 does not imply (3.15) when F has discontinuities. This is illus-

 trated by the following example in which Q converges to Q uniformly but

 the corresponding F fails to converge to F. Let Q(O) = 0 for 0 e (0, 1] so that
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 200 GILBERT W. BASSETT AND ROGER W. KOENKER

 the associated df is

 F(u) =1 u< 0 (3.16)

 Consider,

 Q(O)={_X ~~n-' lOcEA12 (3.17)

 and

 1? U < -n-1

 F(u) = g 2 -n-1 <, u < n- 1 (3.18)

 01 n1 -<

 Then Q( ) satisfies (3.8-9), Q actually converges to Q uniformly, but

 lim F(Q({)) = F(0)= I # 1 = F(O) (3.19)

 n - cc

 so F fails to converge to F. Note that since the pointwise limit of F is neither

 right or left continuous at 0 the limit fails to be a proper distribution function.

 An immediate consequence, however, of the Theorem 2.3 is that under the

 same conditions,

 P{QY(O) = QY(O) = Qy(O + 0) = Qy(O + 0), n > n0} > 1-E (3.20)

 which implies,

 LEMMA 3.2. For any 0 such that F(Q(0)) > F(Q(0) - 0),

 lim sup FY(Qy(0)) > Fy(Qy(0)) as. (3.21)

 n-

 lim inf Fy(Q(0) - 0) < Fy(Q(0) - 0) a.s. (3.22)

 n -o

 Lemmas 3.1 and 3.2 imply (3.4) and (3.5) which in turn establish our main

 result:

 THEOREM 3.2. Under (Dl) and (D2): sup IFy(u)-Fy(u)-+ 0 a.s.

 u E R

 This provides a reasonably satisfactory extension of the Glivenko-Cantelli

 Theorem for linear models with p fixed. It remains to be seen what can be

 done when p -+ oo with n.
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